Impact of lactoferrin supplementation on cotrimoxazole pharmacokinetics: A preliminary clinical investigation

Authors

  • Dion Notario Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia https://orcid.org/0000-0001-7376-3517
  • Angela Marietha Munzir Department of Pharmacy, Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia https://orcid.org/0009-0003-0734-8317
  • Yulina Novella Department of Pharmacy, Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia https://orcid.org/0009-0007-7172-5366
  • Linawati Hananta Department of Pharmacology, Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia https://orcid.org/0000-0002-2068-4345

DOI:

https://doi.org/10.5599/admet.2358

Keywords:

population pharmacokinetics, urinary excretion, one-compartment, drug interaction

Abstract

Background and purpose: Cotrimoxazole, a commonly prescribed antibiotic, has substantial resistance, especially in Indonesia, with its uropathogenic resistance reaching 67% in 2017. Although cotrimoxazole has been suggested to be co-administered with lactoferrin to enhance its antibacterial effectiveness and this practice has been widely adopted since the Covid-19 pandemic, the impact of lactoferrin on the pharmacokinetics of cotrimoxazole remains relatively unknown. This study aims to conduct a preliminary clinical investigation into the impact of lactoferrin supplementation on the pharmacokinetics of cotrimoxazole, focusing on the elimination rate and excretion of unchanged drug in urine. Experimental approach: This study employed a blinded, cross-over, single-dose pharmacokinetics investigation, which included five healthy volunteers as participants. In the initial period, the first group received cotrimoxazole (80 mg trimethoprim and 400 mg sulfamethoxazole) along with a lactoferrin-containing supplement, while the second group only received cotrimoxazole. Subsequently, after a washout period, the conditions were reversed. Urine sampling was conducted at intervals from 0 to 24 hours post-medication, and drug levels in the urine were determined using high-performance liquid chromatography. Key results: The population-based pharmacokinetic analysis revealed that the optimal model was the one-compartment model with first-order elimination and proportional residual error. Conclusion: The findings show that the administration of lactoferrin-containing supplements did not significantly influence the covariate model and, therefore, did not alter the pharmacokinetics parameter of cotrimoxazole in urine with a single administration, implying that lactoferrin did not cause drug interaction problems when given simultaneously.

Downloads

Download data is not yet available.

References

L. Deconinck, A. Dinh, C. Nich, T. Tritz, M. Matt, O. Senard, S. Bessis, T. Bauer, M. Rottman, J. Salomon, F. Bouchand, B. Davido. Efficacy of cotrimoxazole (Sulfamethoxazole-Trimethoprim) as a salvage therapy for the treatment of bone and joint infections (BJIs). PLoS ONE 14 (2019) e0224106. https://doi.org/10.1371/journal.pone.0224106

S.W. Ku, A. Jiamsakul, K. Joshi, M.K.U. Pasayan, A. Widhani, R. Chaiwarith, S. Kiertiburanakul, A. Avihingsanon, P.S. Ly, N. Kumarasamy, C.D. Do, T.P. Merati, K. van Nguyen, A. Kamarulzaman, F. Zhang, M.P. Lee, J.Y. Choi, J. Tanuma, S. Khusuwan, B.L.H. Sim, O.T. Ng, W. Ratanasuwan, J. Ross, W. Wong, P. Ly, V. Khol, F. Zhang, H. Zhao, N. Han, M. Lee, P. Li, W. Lam, Y. Chan, N. Kumarasamy, S. Saghayam, C. Ezhilarasi, S. Pujari, K. Joshi, S. Gaikwad, A. Chitalikar, S. Sangle, V. Mave, I. Marbaniang, D. Wirawan, F. Yuliana, E. Yunihastuti, D. Imran, A. Widhani, J. Tanuma, S. Oka, T. Nishijima, J. Choi, N. S, J. Kim, B. Sim, Y. Gani, N. Rudi, A. Kamarulzaman, S. Syed Omar, S. Ponnampalavanar, I. Azwa, R. Ditangco, M. Pasayan, M. Mationg, W. Wong, S. Ku, P. Wu, O. Ng, P. Lim, L. Lee, Z. Ferdous, A. vihingsanon, S. Gatechompol, P. Phanuphak, C. Phadungphon, S. Kiertiburanakul, A. Phuphuakrat, L. Chumla, N. Sanmeema, R. Chaiwarith, T. Sirisanthana, W. Kotarathititum, J. Praparattanapan, S. Khusuwan, P. Kantipong, P. Kambua, W. Ratanasuwan, R. Sriondee, K. Nguyen, H. Bui, D. Nguyen, D. Nguyen, C. Do, A. Ngo, L. Nguyen, A. Sohn, J. Ross, B. Petersen, D. Cooper, M. Law, A. Jiamsakul, D. Rupasinghe. Cotrimoxazole prophylaxis decreases tuberculosis risk among Asian patients with HIV. J Int AIDS Soc 22 (2019) e25264. https://doi.org/10.1002/jia2.25264

B. Khalid, S. Shabir, S. Shabir, A. Fatima, S. Aslam, M.A. Khan, M. Ahsan. Efficacy of short course versus standard course oral co-trimoxazole in the management of children with lower urinary tract infections. The Professional Medical Journal 28 (2021) 344-349. https://doi.org/10.29309/TPMJ/2021.28.03.4615

C. Manyando, E.M. Njunju, U. D’Alessandro, J.P. van geertruyden. Safety and Efficacy of Co-Trimoxazole for Treatment and Prevention of Plasmodium falciparum Malaria: A Systematic Review. PLOS ONE 8 (2013) e56916. https://doi.org/10.1371/journal.pone.0056916

N. Ford, Z. Shubber, J. Jao, E.J. Abrams, L. Frigati, L. Mofenson. Safety of cotrimoxazole in pregnancy: a systematic review and meta-analysis. J Acquir Immune Defic Syndr 66 (2014) 512-521. https://doi.org/10.1097/qai.0000000000000211

C.J. Murray, K.S. Ikuta, F. Sharara, L. Swetschinski, G. Robles Aguilar, A. Gray, C. Han, C. Bisignano, P. Rao, E. Wool, S.C. Johnson, A.J. Browne, M.G. Chipeta, F. Fell, S. Hackett, G. Haines-Woodhouse, B.H. Kashef Hamadani, E.A.P. Kumaran, B. McManigal, R. Agarwal, S. Akech, S. Albertson, J. Amuasi, J. Andrews, A. Aravkin, E. Ashley, F. Bailey, S. Baker, B. Basnyat, A. Bekker, R. Bender, A. Bethou, J. Bielicki, S. Boonkasidecha, J. Bukosia, C. Carvalheiro, C. Castañeda-Orjuela, V. Chansamouth, S. Chaurasia, S. Chiurchiù, F. Chowdhury, A.J. Cook, B. Cooper, T.R. Cressey, E. Criollo-Mora, M. Cunningham, S. Darboe, N.P.J. Day, M. De Luca, K. Dokova, A. Dramowski, S.J. Dunachie, T. Eckmanns, D. Eibach, A. Emami, N. Feasey, N. Fisher-Pearson, K. Forrest, D. Garrett, P. Gastmeier, A.Z. Giref, R.C. Greer, V. Gupta, S. Haller, A. Haselbeck, S.I. Hay, M. Holm, S. Hopkins, K.C. Iregbu, J. Jacobs, D. Jarovsky, F. Javanmardi, M. Khorana, N. Kissoon, E. Kobeissi, T. Kostyanev, F. Krapp, R. Krumkamp, A. Kumar, H.H. Kyu, C. Lim, D. Limmathurotsakul, M.J. Loftus, M. Lunn, J. Ma, N. Mturi, T. Munera-Huertas, P. Musicha, M.M. Mussi-Pinhata, T. Nakamura, R. Nanavati, S. Nangia, P. Newton, C. Ngoun, A. Novotney, D. Nwakanma, C.W. Obiero, A. Olivas-Martinez, P. Olliaro, E. Ooko, E. Ortiz-Brizuela, A.Y. Peleg, C. Perrone, N. Plakkal, A. Ponce-de-Leon, M. Raad, T. Ramdin, A. Riddell, T. Roberts, J.V. Robotham, A. Roca, K.E. Rudd, N. Russell, J. Schnall, J.A.G. Scott, M. Shivamallappa, J. Sifuentes-Osornio, N. Steenkeste, A.J. Stewardson, T. Stoeva, N. Tasak, A. Thaiprakong, G. Thwaites, C. Turner, P. Turner, H.R. van Doorn, S. Velaphi, A. Vongpradith, H. Vu, T. Walsh, S. Waner, T. Wangrangsimakul, T. Wozniak, P. Zheng, B. Sartorius, A.D. Lopez, A. Stergachis, C. Moore, C. Dolecek, M. Naghavi. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399 (2022) 629-655. https://doi.org/10.1016/s0140-6736(21)02724-0

A.K. Sugianli, F. Ginting, I. Parwati, M.D. de Jong, F. van Leth, C. Schultsz. Antimicrobial resistance among uropathogens in the Asia-Pacific region: a systematic review. JAC Antimicrob Resist 3 (2021) dlab003. https://doi.org/10.1093/jacamr/dlab003

M.S. Al-Mogbel, G.A. Menezes, M.T. Elabbasy, M.M. Alkhulaifi, A. Hossain, M.A. Khan. Effect of Synergistic Action of Bovine Lactoferrin with Antibiotics on Drug Resistant Bacterial Pathogens. Medicina 57 (2021) 343. https://doi.org/10.3390/medicina57040343

D.B. Kell, E.L. Heyden, E. Pretorius. The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Front. Immunol 11 (2020) 1221. https://doi.org/10.3389/fimmu.2020.01221

R. Russo, E. Karadja, F. de Seta. Evidence-based mixture containing Lactobacillus strains and lactoferrin to prevent recurrent bacterial vaginosis: a double blind, placebo controlled, randomised clinical trial. Beneficial Microbes 10 (2019) 19-26. https://doi.org/10.3920/BM2018.0075

P.W. Chen, T.T. Jheng, C.L. Shyu, F.C. Mao. Synergistic antibacterial efficacies of the combination of bovine lactoferrin or its hydrolysate with probiotic secretion in curbing the growth of meticillin-resistant Staphylococcus aureus. J Med Microbiol 62 (2013) 1845-1851. https://doi.org/10.1099/jmm.0.052639-0

A.F.G. Cicero, A. Colletti. Nutraceuticals Active on Immune System. Handbook of Nutraceuticals for Clinical Use (2018) 163–179. https://doi.org/10.1007/978-3-319-73642-6_13

Lactoferrin Market Size & Share Report, 2021-2028. https://www.grandviewresearch.com/industry-analysis/lactoferrin-market (accessed December 28, 2023).

N. Anand, R.K. Kanwar, M.L. Dubey, R.K. Vahishta, R. Sehgal, A.K. Verma, J.R. Kanwar. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction. Drug Design, Drug Des Devel Ther. 9 (2015) 3821-3835. https://doi.org/10.2147/dddt.s77860

D. Türk, N. Hanke, T. Lehr. A Physiologically-Based Pharmacokinetic Model of Trimethoprim for MATE1, OCT1, OCT2, and CYP2C8 Drug-Drug-Gene Interaction Predictions. Pharmaceutics 12 (2020) 1074. https://doi.org/10.3390/pharmaceutics12111074

D. Notario, J. Amelia, G. Della. Pengembangan dan Validasi Metode Bioanalisis Trimetoprim dalam Sampel Plasma dan Urin Manusia Simulasi Menggunakan KCKT-PDA. The Indonesian Pharmaceutical Journal 13 (2023) 41-49. https://doi.org/10.22435/jki.v13i1.6189

D. Notario, A. Suwita, K. Kelviyana. Analytical Method Validation of Sulfamethoxazole in Human Plasma and Urine by HPLC-PDA. J. Sains. Kes. 4 (2022) 31-38. https://doi.org/10.25026/jsk.v4iSE-1.1687

M. Fidler, J.J. Wilkins, R. Hooijmaijers, T.M. Post, R. Schoemaker, M.N. Trame, Y. Xiong, W. Wang. Nonlinear Mixed-Effects Model Development and Simulation Using nlmixr and Related R Open-Source Packages. CPT Pharmacometrics Syst Pharmacol. 8 (2019) 621-633. https://doi.org/10.1002/psp4.12445.

J.G. Wagner, E. Nelson. Kinetic analysis of blood levels and urinary excretion in the absorptive phase after single doses of drug. J Pharm Sci. 53 (1964) 1392-1403. https://doi.org/10.1002/jps.2600531126

J. Autmizguine, C. Melloni, C.P. Hornik, S. Dallefeld, B. Harper, R. Yogev, J.E. Sullivan, A.M. Atz, A. Al-Uzri, S. Mendley, B. Poindexter, J. Mitchell, A. Lewandowski, P. Delmore, M. Cohen-Wolkowiez, D. Gonzalez, the Pediatric Trials Network Steering Committee. Population Pharmacokinetics of Trimethoprim-Sulfamethoxazole in Infants and Children. Antimicrob Agents Chemother. 62 (2017) e01813-17. https://doi.org/10.1128/aac.01813-17

N. Alsaad, J.A. Dijkstra, O.W. Akkerman, W.C.M. De Lange, D. Van Soolingen, J.G.W. Kosterink, T.S. Van Der Werf, J.W.C. Alffenaar. Pharmacokinetic Evaluation of Sulfamethoxazole at 800 Milligrams Once Daily in the Treatment of Tuberculosis. Antimicrob Agents Chemother. 60 (2016) 942–3947. https://doi.org/10.1128/aac.02175-15

R. Welte, R. Beyer, J. Hotter, A. Broeker, S.G. Wicha, T. Gasperetti, P. Ranke, M.-M. Zaruba, I. Lorenz, S. Eschertzhuber, M. Ströhle, R. Bellmann-Weiler, M. Joannidis, R. Bellmann. Pharmacokinetics of trimethoprim/sulfametrole in critically ill patients on continuous renal replacement therapy. J Antimicrob Chemother. 75 (2020) 1237–1241. https://doi.org/10.1093/jac/dkz556

P.A. Masters, T.A. O’Bryan, J. Zurlo, D.Q. Miller, N. Joshi. Trimethoprim-Sulfamethoxazole Revisited. Arch Intern Med. 163 (2003) 402–410. https://doi.org/10.1001/archinte.163.4.402.

Downloads

Published

27-06-2024 — Updated on 27-06-2024

Issue

Section

Original Scientific Articles

How to Cite

Impact of lactoferrin supplementation on cotrimoxazole pharmacokinetics: A preliminary clinical investigation. (2024). ADMET and DMPK, 12(3), 543-551. https://doi.org/10.5599/admet.2358

Funding data

Similar Articles

1-10 of 263

You may also start an advanced similarity search for this article.