Antimalarial evaluation of alkyl-linked bis-thiadiazine derivatives in murine model infected with two Plasmodium strains
DOI:
https://doi.org/10.5599/admet.2105Keywords:
Plasmodium berghei, Plasmodium yoelii, Bis-THTT, drugs, parasitemia, humoral response
Abstract
Background and Purpose: Plasmodium falciparum and P. vivax are responsible for most malaria cases in humans in the African Region and the Americas; these parasites have developed resistance to classic antimalarial drugs. On the other hand, previous investigations of the alkyl-linked bis tetrahydro-(2H)-1,3,5-thiadiazine-2-thione (bis-THTT) derivatives compounds show satisfactory results against protozoan parasites such as Trypanosoma cruzi, Trypanosoma vaginalis, Trypanosoma brucei rhodesiense and Leishmania donovani. Therefore, it is possible to see some effect of bis-THTT derivatives on other protozoan parasites, such as Plasmodium. Experimental Approach: This study aimed to perform an in vivo biological evaluation of bis-THTT (JH1 to JH6) derivatives compounds as possible anti-malaria drugs in BALB/c mice infected with Plasmodium berghei ANKA and Plasmodium yoelii 17XL strains. In this work, we evaluated the compounds as potential antimalarial drugs in BALB/c mice infected with Plasmodium strains. Key Results: For each compound, we assess the percentages of parasitemia by smears from tail blood and the humoral response by indirect ELISA test using each compound as an antigen. We also evaluated the B lymphocyte response and the cytotoxicity of the bis-THTT derivatives compounds with MTT cell proliferation assays. Conclusions: Our results show that the bis-THTT derivatives JH2 and JH4 presented effective parasitemia control in mice infected with P. berghei; JH5 and JH6 compounds have similar infection control results as chloroquine in mice infected P. yoelii strain. The evaluation of bis-THTT derivatives compounds in a model of BALB/c mice infected with P. berghei and P. yoelii allowed us to conclude that some of them have an antimalarial effect; however, none of the tested compounds exceeded the efficiency of chloroquine.
Downloads
References
World Health Organization, https://www.who.int/malaria/media/world-malaria-report-2018/en/ (accessed Jan 21, 2021).
World Health Organization, https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (accessed Oct 02, 2022).
R. Killick-Kendrick, Rodent malaria, Elsevier Science, London, England, 2014, p 1-52. ISBN 0124071503
A.G. Craig, G.E. Grau, C. Janse, J.W. Kazura, D. Milner, J.W. Barnwell, G. Turner, and J. Langhorne. The role of animal models for research on severe malaria. PLoS Pathogen 8 (2012) e1002401. https://doi.org/10.1371/journal.ppat.1002401.
K. Plewes, S. J. Leopold, H.W.F. Kingston, A.M. Dondorp. Malaria: What’s new in the management of malaria? Infectious. Disease Clinics of North American 33 (2019) 39-60. https://doi.org/10.1016/j.idc.2018.10.002.
L.L. Gustafsson, Handbook of drugs for tropical parasitic infections, Taylor & Francis, London, England, 1995. ISBN 0748401687
DrugBank online, https://www.drugbank.ca/drugs/DB00608 (accessed Jan 21, 2021).
P.G Bray, O. Janneh, K.J. Raynes, M. Mungthin, H. Ginsburg, S.A. Ward. Cellular uptake of chloroquine is dependent on binding to ferriprotoporphyrin IX and is independent of NHE activity in Plasmodium falciparum. Journal of Cell Biology 145 (1999) 363-376. https://doi.org/10.1083/jcb.145.2.363.
M. Chinappi, A. Via, P. Marcatili, A. Tramontano. On the mechanism of chloroquine resistance in Plasmodium falciparum. PLoS One 5 (2010) e14064. https://doi.org/10.1371/journal.pone.0014064.
G.N.L. Galappaththy, P. Tharyan, R. Kirubakaran. Primaquine for preventing relapse in people with Plasmodium vivax malaria treated with chloroquine. Cochrane Database of Systematic Reviews 10 (2013) CD004389. https://doi.org/10.1002/14651858.CD004389.pub3.
C.V. Plowe, C. Roper, J.W. Barnwell, C.T. Happi, H.H. Joshi, W. Mbacham, S.R. Meshnick, K. Mugittu, I. Naidoo, R. N. Price, R. W. Shafer, C. H. Sibley, C. J. Sutherland, P. A. Zimmerman, P. J. Rosenthal. World antimalarial resistance network (WARN) III: Molecular markers for drug resistant malaria. Malaria Journal 6 (2007) 121. https://doi.org/10.1186/1475-2875-6-121.
A.N. El-Shorbagi. New tetrahydro-2H-1,3,5-thiadiazine-2-thione derivatives as potential antimicrobial agents. Archive der Pharmazie 333 (2000) 281-286. https://doi.org/10.1002/1521-4184(20009)333:9<281::aid-ardp281>3.0.co;2-e.
J. Coro, R. Pérez, H. Rodríguez, M. Suárez, C. Vega, M. Rolón, D. Montero, J.J. Nogal, A. Gomez-Barrio. Synthesis and antiprotozoan evaluation of new alkyl-linked bis(2-thioxo-[1,3,5]thiadiazinan-3-yl) carboxylic acids. Bioorganicand Medicinal Chemistry 13 (2005) 3413-3421. https://doi.org/10.1016/j.bmc.2005.03.009.
J. Coro, R. Pérez, L. Monzote, H. Rodríguez, M. Suárez. Thiadiazine derivatives as antiprotozoal new drugs. The open medicinal chemistry journal 5 (2011) 51-60. https://doi.org/10.2174/1874104501105010051.
J. Coro, R. Atherton, S. Little, H. Wharton, V. Yardley, A. Alvarez A, M. Suárez, R. Pérez, H. Rodriguez. Alkyl-linked bis-thtt derivatives as potent in vitro trypanocidal agents. Bioorganic and Medicinal Chemistry Letters 16 (2006) 1312-1315. https://doi.org/10.1016/j.bmcl.2005.11.060.
J. Coro, S. Little, V. Yardley, M. Suárez, H. Rodríguez, N. Martín, R. Perez-Piñeiro. Synthesis and antiprotozoal evaluation of new n4-(benzyl)spermidyl-linked bis(1,3,5-thiadiazinane-2-thiones). Archive del Pharmazie 341 (2008) 708-713. https://doi.org/10.1002/ardp.200800011.
B.R. Moore, M. Page-Sharp, J.R. Stoney, K.F. Ilett, J.D. Jago, K.T. Batty. Pharmacokinetics, pharmacodynamics, and allometric scaling of chloroquine in a murine malaria model. Antimicrobial Agents and Chemotherapy 55 (2011) 3899-3907. https://doi.org/10.1128/AAC.00067-11.
C.F. Brayton. Dimethyl sulfoxide (DMSO): A review. The Cornell Veterinarian 76 (1986) 61-90. https://pubmed.ncbi.nlm.nih.gov/3510103/
L.M. Spencer-Valero, S.A. Ogun, S.L. Fleck, I.T. Ling, T.J. Scott-Finnigan, M.J. Blackman, A.A. Holder. Passive immunization with antibodies against three distinct epitopes on Plasmodium yoelii merozoite surface protein 1 suppresses parasitemia. Infection and Immunity 66 (1998) 3925-3930. https://doi.org/10.1128/IAI.66.8.3925-3930.1998.
K. Moll, A. Kaneko, A. Scherf, M. Wahlgren. Methods in malaria research; EviMalar, 6th ed. Glasgow, U.K., 2013, 1-499. https://www.beiresources.org/portals/2/MR4/Methods_In_Malaria_Research-6th_edition.pdf (accessed Jan 21, 2021).
A. Voller, D.E. Bidwell, A. Bartlett. Enzyme immunoassays in diagnostic medicine. theory and practice. Bulletin of the World Health Organization 53 (1976) 55-65. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2366417/
A. Voller, D. Bidwell. Enzyme-linked immunosorbent assay. Manual of clinical immunology, 3rd edn. American Society for Microbiology, Washington DC, United States of America, 1986, 99-109.
Promega Corporation, https://www.promega.es/products/cell-health-assays/cell-viability-and-cytotoxicity-assays/celltiter-96-aqueous-one-solution-cell-proliferation-assay-_mts_/?catNum=G3582 (accessed Jan 21, 2021).
I. Abrahasem, J.B. Lorens. Evaluating extracellular matrix influence on adherent cell signaling by cold trypsin phosphorylation-specific flow cytometry. BMC Molecular and Cell Biology 19 (2013) 14-36. https://doi.org/10.1186/1471-2121-14-36.
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Ministerio de Ciencia e Innovación
Grant numbers CHEM20-09