Food and bile micelle binding of quaternary ammonium compounds
DOI:
https://doi.org/10.5599/admet.2023Keywords:
Negative food effect, unbound fraction, simulated intestinal fluid, dynamic dialysis, intestinal membrane permeationAbstract
Background and Purpose: Physiologically-based biopharmaceutics modeling (PBBM) has been widely used to predict the oral absorption of drugs. However, the prediction of food effects on oral drug absorption is still challenging, especially for negative food effects. Marked negative food effects have been reported in most cases of quaternary ammonium compounds (QAC). However, the mechanism has remained unclear. The purpose of the present study was to investigate the bile micelle and food binding of QACs as a mechanism of the negative food effect. Experimental Approach: Trospium (TRS), propantheline (PPT), and ambenonium (AMB) were selected as model QAC drugs. The oral absorption of these QACs has been reported to be reduced by 77% (TRS), > 66% (PPT), and 79% (AMB), when taken with food. The fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, containing 3 and 15 mM taurocholic acid, respectively) with or without FDA breakfast homogenate (BFH) were used as the simulated intestinal fluid. The unbound fraction (fu) of the QACs in these media was measured by dynamic dialysis. Key Results: The fu ratios (FeSSIF/ FaSSIF) were 0.67 (TRS), 0.47 (PPT), and 0.76 (AMB). When BFH was added to FeSSIF, it was reduced to 0.39 (TRS), 0.28 (PPT), and 0.59 (AMB). Conclusion: These results suggested that bile micelle and food binding play an important role in the negative food effect on the oral absorption of QACs.
Downloads
References
K. Sugano. Biopharmaceutics modeling and simulations: theory, practice, methods, and applications. John Wiley & Sons, Hoboken, New Jersey, USA, 2012. https://doi.org/10.1002/9781118354339.fmatter.
K. Sugano, M. Kataoka, C.C. Mathews, S. Yamashita. Prediction of food effect by bile micelles on oral drug absorption considering free fraction in intestinal fluid. European Journal of Pharmaceutical Sciences 40 (2010) 118-124. https://doi.org/10.1016/j.ejps.2010.03.011.
Y. Akiyama, S. Ito, T. Fujita, K. Sugano. Prediction of negative food effect induced by bile micelle binding on oral absorption of hydrophilic cationic drugs. European Journal of Pharmaceutical Sciences 155 (2020) 105543. https://doi.org/10.1016/j.ejps.2020.105543.
A.E. Riedmaier. Predicting Food Effects: Are We There Yet. The AAPS Journal 24 (2022) 25. https://doi.org/10.1208/s12248-021-00674-x.
F. Kesisoglou. Can PBPK Modeling Streamline Food Effect Assessments. The Journal of Clinical Pharmacology 60(Suppl 1) (2020) S98-S104. https://doi.org/10.1002/jcph.1678.
X.J.H. Pepin, J.E. Huckle, R.V. Alluri, S. Basu, S. Dodd, N. Parrott, A.E. Riedmaier. Understanding Mechanisms of Food Effect and Developing Reliable PBPK Models Using a Middle-out Approach. The AAPS Journal 23 (2021) 12. https://doi.org/10.1208/s12248-020-00548-8.
A.E. Riedmaier, K. DeMent, J. Huckle, P. Bransford, C. Stillhart, R. Lloyd, R. Alluri, S. Basu, Y. Chen, V. Dhamankar, S. Dodd, P. Kulkarni, A. Olivares-Morales, C.C. Peng, X. Pepin, X. Ren, T. Tran, C. Tistaert, T. Heimbach, F. Kesisoglou, C. Wagner, N. Parrott. Use of Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Drug-Food Interactions: an Industry Perspective. The AAPS Journal 22 (2020) 123. https://doi.org/10.1208/s12248-020-00508-2.
H. Ramasubramanian, S. Castleberry. Biopharmaceutical Modeling of Food Effect─Exploring the Role of Dietary Fat. Molecular Pharmaceutics 20 (2023) 2726-2737. https://doi.org/10.1021/acs.molpharmaceut.3c00170.
L. Cheng, H. Wong. Food Effects on Oral Drug Absorption: Application of Physiologically-Based Pharmacokinetic Modeling as a Predictive Tool. Pharmaceutics 12 (2020) 672. https://doi.org/10.3390/pharmaceutics12070672.
M. Li, P. Zhao, Y. Pan, C. Wagner. Predictive Performance of Physiologically Based Pharmacokinetic Models for the Effect of Food on Oral Drug Absorption: Current Status. CPT: Pharmacometrics & Systems Pharmacology 7 (2018) 82-89. https://doi.org/10.1002/psp4.12260.
Z. Vinarov, B. Abrahamsson, P. Artursson, H. Batchelor, P. Berben, A. Bernkop-Schnürch, J. Butler, J. Ceulemans, N. Davies, D. Dupont, G.E. Flaten, N. Fotaki, B.T. Griffin, V. Jannin, J. Keemink, F. Kesisoglou, M. Koziolek, M. Kuentz, A. Mackie, A.J. Meléndez-Martínez, M. McAllister, A. Müllertz, C.M. O'Driscoll, N. Parrott, J. Paszkowska, P. Pavek, C.J.H. Porter, C. Reppas, C. Stillhart, K. Sugano, E. Toader, K. Valentová, M. Vertzoni, S.N. De Wildt, C.G. Wilson, P. Augustijns. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Advanced Drug Delivery Reviews 171 (2021) 289-331. https://doi.org/10.1016/j.addr.2021.02.001.
Kambayashi, Y. Shirasaka. Food effects on gastrointestinal physiology and drug absorption. Drug Metabolism and Pharmacokinetics 48 (2023) 100488. https://doi.org/10.1016/j.dmpk.2022.100488.
L.X. Yu, G.L. Amidon, J.E. Polli, H. Zhao, M.U. Mehta, D.P. Conner, V.P. Shah, L.J. Lesko, M.L. Chen, V.H. Lee, A.S. Hussain. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharmaceutical Research 19 (2002) 921-925. https://doi.org/10.1023/a:1016473601633.
B.N. Singh. A quantitative approach to probe the dependence and correlation of food-effect with aqueous solubility, dose/solubility ratio, and partition coefficient (Log P) for orally active drugs administered as immediate-release formulations. Drug Development Research 65 (2005) 55-75. https://doi.org/10.1002/ddr.20008.
K. Sugano, K. Terada. Rate- and Extent-Limiting Factors of Oral Drug Absorption: Theory and Applications. Journal of Pharmaceutical Sciences 104 (2015) 2777-2788. https://doi.org/10.1002/jps.24391.
H. Lennernäs, C.G. Regårdh. Evidence for an interaction between the beta-blocker pafenolol and bile salts in the intestinal lumen of the rat leading to dose-dependent oral absorption and double peaks in the plasma concentration-time profile. Pharmaceutical Research 10 (1993) 879-883. https://doi.org/10.1023/a:1018965328626.
T. Yamaguchi, C. Ikeda, Y. Sekine. Intestinal absorption of a beta-adrenergic blocking agents nadolol. II. Mechanism of the inhibitory effect on the intestinal absorption of nadolol by sodium cholate in rats. Chemical and Pharmaceutical Bulletin (Tokyo) 34 (1986) 3836-3843. https://doi.org/10.1248/cpb.34.3836.
F. Ingels, B. Beck, M. Oth, P. Augustijns. Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers. International Journal of Pharmaceutics 274 (2004) 221-232. https://doi.org/10.1016/j.ijpharm.2004.01.014.
G. Bouchard, P.A. Carrupt, B. Testa, V. Gobry, H.H. Girault. The apparent lipophilicity of quaternary ammonium ions is influenced by galvani potential difference, not ion-pairing: a cyclic voltammetry study. Pharmaceutical Research 18 (2001) 702-708. https://doi.org/10.1023/A:1011001914685.
K. Sugano, Y. Nabuchi, M. Machida, Y. Asoh. Permeation characteristics of a hydrophilic basic compound across a bio-mimetic artificial membrane. International Journal of Pharmaceutics 275 (2004) 271-278. https://doi.org/10.1016/j.ijpharm.2004.02.010.
H. Fischer, M. Kansy, A. Avdeef, F. Senner. Permeation of permanently positive charged molecules through artificial membranes--influence of physico-chemical properties. European Journal of Pharmaceutical Sciences 31 (2007) 32-42. https://doi.org/10.1016/j.ejps.2007.02.001.
P. Langguth, A. Kubis, G. Krumbiegel, W. Lang, H.P. Merkle, W. Wächter, H. Spahn-Langguth, R. Weyhenmeyer. Intestinal absorption of the quaternary trospium chloride: permeability-lowering factors and bioavailabilities for oral dosage forms. European Journal of Pharmaceutics and Biopharmaceutics 43 (1997) 265-272. https://doi.org/10.1016/S0939-6411(97)00050-7.
O.Doroshyenko, A. Jetter, K.P. Odenthal, U. Fuhr. Clinical pharmacokinetics of trospium chloride. Clinical Pharmacokinetics 44 (2005) 701-720. https://doi.org/10.2165/00003088-200544070-00003.
C.W. Vose, G.C. Ford, S.J. Grigson, N.J. Haskins, M. Prout, P.M. Stevens, D.A. Rose, R.F. Palmer, H. Rudel. Pharmacokinetics of propantheline bromide in normal man. British Journal of Clinical Pharmacology 7 (1979) 89-93. https://doi.org/10.1111/j.1365-2125.1979.tb00902.x.
T. Tadken, M. Weiss, C. Modess, D. Wegner, T. Roustom, C. Neumeister, U. Schwantes, H.U. Schulz, W. Weitschies, W. Siegmund. Trospium chloride is absorbed from two intestinal "absorption windows" with different permeability in healthy subjects. International Journal of Pharmaceutics 515 (2016) 367-373. https://doi.org/10.1016/j.ijpharm.2016.10.030.
D.K. Moses, B.G. Charles, P.J. Ravenscroft, I.M. Whyte. Food reduces the oral bioavailability of propantheline bromide in healthy subjects.British Journal of Clinical Pharmacology 16 (1983) 758-759. https://doi.org/10.1111/j.1365-2125.1983.tb02261.x.
K. Ohtsubo, N. Fujii, S. Higuchi, T. Aoyama, I. Goto, T. Tatsuhara. Influence of food on serum ambenonium concentration in patients with myasthenia gravis. European Journal of Clinical Pharmacology 42 (1992) 371-374. https://doi.org/10.1007/BF00280120.
S. Modi, B.D. Anderson. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Molecular Pharmaceutics 10 (2013) 3076-3089. https://doi.org/10.1021/mp400154a.
P. Guan, Y. Lu, J. Qi, M. Niu, R. Lian, F. Hu, W. Wu. Enhanced oral bioavailability of cyclosporine A by liposomes containing a bile salt. International Journal of Nanomedicine 6 (2011) 965-974. https://doi.org/10.2147/IJN.S19259.
K. Yano, Y. Masaoka, M. Kataoka, S. Sakuma, S. Yamashita. Mechanisms of membrane transport of poorly soluble drugs: role of micelles in oral absorption processes. Journal of Pharmaceutical Sciences 99 (2010) 1336-1345. https://doi.org/10.1002/jps.21919.
D.A. Silva, N.M. Davies, N. Bou-Chacra, H.G. Ferraz, R. Löbenberg. Update on Gastrointestinal Biorelevant Media and Physiologically Relevant Dissolution Conditions. Dissolution Technology 29 (2022) 62-75. https://doi.org/10.14227/DT290222P62.
A. Radwan, G.L. Amidon, P. Langguth. Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations: the importance of viscosity. Biopharmaceutics & Drug Disposition 33 (2012) 403-416. https://doi.org/10.1002/bdd.1798.
S. Schröder, A. Jetter, M. Zaigler, R. Weyhenmeyer, G. Krumbiegel, W. Wächter, U. Fuhr. Absorption pattern of trospium chloride along the human gastrointestinal tract assessed using local enteral administration. Internatinal Journal of Clinical Pharmacology and Therapeutics 42 (2004) 543-549. https://doi.org/10.5414/cpp42543.
S. Cvijić, P. Langguth. Improvement of trospium-specific absorption models for fasted and fed states in humans. Biopharmaceutics & Drug Disposition 35 (2014) 553-558. https://doi.org/10.1002/bdd.1911.
C.A. Heinen, S. Reuss, G.L. Amidon, P. Langguth. Ion pairing with bile salts modulates intestinal permeability and contributes to food-drug interaction of BCS class III compound trospium chloride. Molecular Pharmaceutics 10 (2013) 3989-3996. https://doi.org/10.1021/mp400179v.
N.M. Davies, J.K. Takemoto, D.R. Brocks, J.A. Yáñez. Multiple peaking phenomena in pharmacokinetic disposition. Clinical Pharmacokinetics 49 (2010) 351-377. https://doi.org/10.2165/11319320-000000000-00000.
K. Sugano. Lost in modelling and simulation. ADMET & DMPK 9 (2021) 75-109. https://doi.org/10.5599/admet.923.
M. Kansy, F. Senner, K. Gubernator. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry 41 (1998) 1007-1010. https://doi.org/10.1021/jm970530e.
A. Avdeef, S. Bendels, L. Di, B. Faller, M. Kansy, K. Sugano, Y. Yamauchi. PAMPA--critical factors for better predictions of absorption. Journal of Pharmaceutical Sciences 96 (2007) 2893-2909. https://doi.org/10.1002/jps.21068.
K. Sugano, N. Takata, M. Machida, K. Saitoh, K. Terada. Prediction of passive intestinal absorption using bio-mimetic artificial membrane permeation assay and the paracellular pathway model. International Journal of Pharmaceutics 24 (2002) 241-251. https://doi.org/10.1016/s0378-5173(02)00240-5.
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.