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Abstract

We describe three machine learning models submitted to the 2019 Solubditgrgfe. All are founded on
treellike classifiers, with one model being based on Random Forest and another on the related Extra Trees
algorithm. The third model is a consensus predictor combining the former two with a Bagging classifier. We
call this consesus classifier Vox Machinarum, and here discuss how it benefits from the Wisdom of Crowds.
On the first 2019 Solubility Challenge test set of 100Marance intrinsic aqueous solubilities, Extra Trees

is our best classifier. One the other, a higihiance set of 32 molecules, we find that Vox Machinarum and
Random Forest both perform a little better than Extra Trees, and almost equally to one another. We also
compare the gold standard solubilities from the 2019 Solubility Challenge with a set of fiédvated
solubilities for most of the same compounds.
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Introduction

Aqueous solubility remagione of the most significant challenges in drug development, with failure to
produce bioavailable compounds potentially denying patients muméded therapeutic interventions,
while costing pharmaceutical companies years of time and hundreds of millibmliars, euros or
pounds. The oftjuoted facts are that as many as 9of drugs in development have problematic solubility
issues [1], and inadequate water solubility remains a major cause of failure of drug development projects
[2].

Solubility is als@ significant challengéor computational chemistry [3]. First principles approaches
have made some progress in recent years, and in the longer term may provide the most satisfactory means
of computing solubility [8L1]. However, currently such first pdiples methods require a substantial
amount of computer time and, despite potentially providing more theoretical insight, are generally less
accurate in their quantitative predictions [3] than are the more empirical informatics approaches.

Datadriven appoaches have been developed over the years. Originally usually labelled QSPR
(Quantitative Structureé’roperty Relationship), they became informatics, and more recently Machine
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Learning (ML). This reflects the use of more sophisticated computational algeriib derive predictions

of unknown solubilities from available experimental solubility data for similar compounds. Early efforts to
predict solubility were simple linear regressions 1, these were followed by muilinear regressions
[15-17], and tken by ML algorithms adopted from computer science and offering sufficient flexibility to
model nonlinear relationships. These include Artificial Neural Networks (ANN) [18], Support Vector
Machines (SVM) [19];Mearest Neighbours (kNN) [20], Random Fo(B$t) [21], and Deep Learning [22].

The cited publications and others in the field have trained and tested their models using a variety of
different datasets. This makes comparison between different methodologies somewhat problematic. Thus,
in 2008 theJounal of Chemical Information and Modelimgmnounced a Solubility Challenge [23], with
entrants invited to predict the newly measured and unrevealed intrinsic aqueous solubilities of 32 test
compounds, given a training set of 100 values for a chemicalllasidnuglike set. All 132 solubilities were
measured using the CheqSol method [24]. The results, announced in 2009 [25] gave some insight into the
then state of the field, although it would have been helpful to have learned rather more about the
methodolagies used by the 99 entrants.

The 2019 Solubility Challenge [26] has provided an opportunity to revisit this exercise, a decade on. This
new challenge diffred from its predecessor in a number of ways. There were two test sets provided,
based on intedaboratory averages of shake flask data, but no standardised training set. A first 100
compound test set was composed of tight leariability data with intedlaboratory standard deviation
given as ~0.17 I&units. Here and throughout this work, the base tegarithm is used. A second -32
molecule set was listed as loose data with a higher reported -lateoratory standard deviation of ~0.62
logSunits. These sets contained numerous compounds whose solubilitiespnavieuslybeen reported in
the literature, 82 A G 6l & STl dzd G2 GKS SyaNIyidaQ AyidSaNR
were omitted from whatever training data were used. A researcher was permitted to submit three
predictions for each of the 2019 Solubility Challenge test datasets.

Methods

Data

A dataset of druglike organic compounds of known intrinsic aqueous solubility was prepared from the
following sources: DEBOO [27ZH p8 > Hnny {2t dzoAf A G @& et &I(2000)F30H&d wHoO X
Wassviket al. (2006) [31]. This datas was constructed on the principle of one trustworthy higality
measurement per compound, with CheqSol [24] measurements preferred where available, and shake flask
data taken as the next preference. This differs from the construction of the test datasehe 2019
Solubility Challenge, which wemmmpiledon the basis of intetaboratory average values. In total, the
original set contained 205 solubility data points. Comparison of our data witppubéshedcompositions
of the 2019 Solubility Challge test sets revealed 52 compounds in common. Their removal left 153
compounds, which were divided into a training set of 117 molecules and an internal validation set of 36
compounds. The internal validation set was to be used for model parametrisatiomaddl selectionThe
models were subsequently to be tested on the 100 compoundvarance tight test set and the 32
compound highvariance loose test set of th2019 Solubility Challenge [26], these sets are respectively
detailed in Tables A1 and A2 (Fgmdix).

Machine karningmodels

A number of machine learning methodgere used in this work, all being implemented in the R
programming language [32].
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Random Forest

Random Forest [33,34] is, as the name suggests, an ensemble of decision tree medivtoindividual
trees are designed to be sufficiently stochastically different from one another for the resulting forest to
benefit from the secalled wisdom of crowds, whereby a set of individually weak predictors can collectively
function asa much stonger predictor [3536]. Each tree is built from a samplebut of the N available
data items, but chosen with replacement such that items may appear multiple times, once, or not at all in
the datasetused for building a given tree. A further sourcaaridomness is that only a limited selection of
the possible features are made available to define the split at each node of the tree; with the selected split
being chosen to be optimal amongst those available. For this study, we used the randomForegepacka
R [37]. Here, the randomForest routine was run to build 1000 trees, with default values of all other
parameters.

Bagging

Bagging [38] follows the above description of Random Forest, excepalifaatures are available for
splitting at each nodef the tree. Hence it is less random and more orientated towards use of individually
more powerful features than Random Forest. The individual trees produced by bagging will be more
mutually similar than those in Random Forest. The implementation of Baggithe ipred package in R
was used, building 100 trees.

Extra Trees

Extra Trees (Extremely Randomized Trees, ET), is a variant of Random Forest that differs in the following
ways. Firstly, the original sample Mfitems is used for tree building, witho selection process. Secondly,
the split at each node, while chosen using a random subset of features, is not fully optimised. Instead, one
random cutoff point is selected for each descriptor, with subsequent optimisation limited twosimg
amongst thee partitions[39]. The implementation in the extraTrees R package was used for this solubility
prediction project. Default values of all parameters in the extraTrees package were used, thus 500 trees
were created.

Relevance Vector Machine

Relevance VectoMachine (RVM) [40] is a Bayesian kefpeted method often used for classification,
but adapted also for regression. It has close similarities to both Support Vector Machine (SVM) and
Gaussian Process algorithms. Compared to SVM, instead of suppontsvBsM uses relevance vectars
based on typical representative members of each class. For regression problems such as this, the
classification boundary is reimagined as a regression line, or hyperplane. We used the implementation in
the kernlab package iR with the radial basis function kernel and the number of iterations set to 100.

k-Nearest Neighbours

k-Nearest Neighbours (KNN) is perhaps the simplest of all ML algorithms. Its predictions are based on
the distances between a query item in the test and its near neighbours in the training set. Distances are
calculated in the feature space, which requires that descriptors should be scaled such that each dimension
of the chemical space contributes fairly to the computed distances. For regressiopratietion for a
given query item is based on the average property value (solubility) of its k closest neighbours in the
GNF AyAy3 aSiQa aoOltSR FSFddzaNB &LJ OSod ¢Kdza AF | T
log Svalues of the four cleest training compounds to the query. The contributions can alternatively be
biased towards closer neighbours if an exponential distdvaesed weighting scheme is used [20], rather
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than a simple mean. For this project, we looked at both simple and expiatigniveighted versions of

KNN, and in each case at measures based on either Euclidean or Manhattan distances. Thus, we trialled
four different variants of the kNN algorithm, and considered values of the parameter k from k = 2 to k = 8.
For each of theseofur variants, the optimum value of k was determined by leame-out crossvalidation
(LOOCV) within the training set. Each of the four variants was run on the internal validation set with its
own optimised k. Implementation of all four KNN variants wiasthe KernelKnn package in R [32,41].

Multilayer Perceptron

The multilayer perceptron (MLP) is a fefedward neural network, of a kind which we previously found
to be the most effective single ML method in an earlier solubility prediction study usadttE00
dataset [28,29]. We used the RSNNS package in R [32,42], with descriptors scaled onto the range zero to
one as for the KNN methodology. For MLP only, we similarly scaled th& Vadues onto the range
between zero and one.

Vox Machinarum

We hare already observed that ensembles of predictors benefit from a wisdom of crowds effect [35,
36], with a number of weaker predictors being combined to form a stronger predictive model. We used
this idea to construct a consensus of ML models in Boddiet. [28], which we compared in that paper
with a Galtonstyle consensus of human predictors. Here, such a consensus ML model is given the name
Vox Machinarum OK2aSy G2 SOK2 { Ké& Papli[B5] $he ¥ok Maxhirfariirg (vE)a  LJI
model consist®f the medianof some number of ML predictions for each test compound. The choice and
number of ML predictors used are optimised using the internal validation set. Possible definitions using
three, five, seven and nine other machine learning predictiensehch compound were considered, each
of these being implemented on the test set.

Descriptors

We calculated CDK descriptors [43] for the training set, internal validation set, and for both 2019
Solubility Challenge test sets. Any descriptor that hadisoefined value for any compound was removed
from the set, as were all zero variance features. This resulted in a total of 173 usable descriptors for each
compound.We used the randomForest R package [37] to assess the importance of each descriptor based
on their individual effects on mean squared error for -@iitbag predictions of the training set, and on
node purity. We also rank the descriptors according to tReineasure of correlation with the training set
log Svalues. The most important descriptoare shown in Table A3.

For the ensembles of trelike models (Bagging, Random Forest and Extra Trees), we used all 173
descriptors, since these methods are considered robust to redundant information [34]. However, for the
four KNN variants, for MLP arfdr RVM we carried out both selection and scaling on the features. We
removed one of any pair of descriptors whose correlation coefficient had an absolute value > 0.8. We
retained the descriptor with a higher absolute correlation coefficient withSayer the training set. Thus,
we reduced the dimensionality substantiatiythe resulting chemical space was defined3%/remaining
descriptors. These remained namthogonal, so35 is an overestimate of the true dimensionality of our
chemical space. Each aeptor value was scaled to

VALUE -MIN,
MA>{,N 'M”\fl,N

whereVALUEis the value of featurd for compoundi, MAXLN is the maximum value that featuretakes
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for any of compound4. to N, and Mll\fl_l,Nis the minimum value of for any of compoundd to N. This
ensures that all training set descriptors take a value in the range from zero to one. Test and internal
validation set features are scaled using té&Xand MIN values from the training set to ensure that no

test set data leak into the model conatition process. For the MLP model only, ®galues were scaled

onto the range zero to one in the same way.

Results and thcussion

Results obtained on the 3®olecule internal validation set are summarised in Tableldre, RMSE is
the Root Mean Squaredter of the predicted logSover the 36 compoundsAAE is the Average Absolute
Error, R is the square of the Pearson Correlation Coefficient (not the coefficient of determination). The
final two columns give the numbers of compounds, out of 36, withfSpgedicted to within 0.5 and within
1.0 logSunits, respectively. Results are shown in Table 1 in order of increasing RMSE for each of nine
individual machine learning methods, with the four kNN variants each being implemented with the k value
pre-selectal by LOOCV over the training set; that is k = 4 for the weighted and unweighted Manhattan
distancebased kNN models, and k = 6 for the corresponding Euclidean didbaseel models. Below this,
the results for different possible definitions of Vox Machumar respectively using the median values from
the best 3, 5, 7 or 9 predictors, are given also by ascending RMSE.

Table 1 Statistical evaluations of ML predictions for the 9 individual predictors and for four possible definitions of the
Vox Machinarum cksifier over our internal validation set of 36 compounds

Method RMSE AAE R Err<0.5 Err<1.0
Extra Trees 0.766 0.582 0.789 18 (50%) 30 (83%)
Random Forest 0.766 0.607 0.792 17 (47%) 29 (81%)
Bagging 0.827 0.659 0.737 16 (44%) 26 (72%)
MLP 1.017 0.804 0.597 16 (44%) 24 (67%)
kNN man unw k4 1.034 0.792 0.579 18 (50%) 26 (72%)
kNN eu exp k6 1.054 0.818 0.573 14 (39%) 25 (69%)
kNN man exp k4 1.062 0.791 0.548 18 (50%) 25 (69%)
RVM 1.121 0.820 0.509 16 (44%) 25 (69%)
kNN eu unw k6 1.122 0.906 0.528 12 (33%) 22 (61%)
Vox Machinarum (3) 0.760 0.602 0.797 17 (47%) 29 (81%)
Vox Machinarum (5) 0.787 0.627 0.771 17 (47%) 29 (81%)
Vox Machinarum (7) 0.891 0.695 0.695 16 (44%) 29 (81%)
Vox Machinarum (9) 0.944 0.728 0.660 16 (44%) 28 (78%)

The rules of te Challenge stipulated that each entrant could submit only three models. Based upon
these resultsthe three-predictor median version of Vox Machinarum, Extra Trees, and Random Forest
were the selected models going forward to the actual Solubility Chgdlemhe third predictor chosen to
contribute to the Vox Machinarum consensus vigagging, which obtairg the third best individual RMSE
here.

2019 Solubility Challenge

The Extra Trees, Random Forest and Bagging classifiers were applied to each bf t@wgpmpound
test set and the tight 3Zompound set provided by the organisers of the 2019 Solubility Challenge. These
compounds were provided in the form of names and SMILES [44] codes. Several of the aromatic
compounds in the test sets had SMILES somlkich expressed these rings as alternating single and double
bonds. Given that our training set molecules had been built with explicitly aromatic SMILES where relevant,
at least for the substantial majority of cases, it was felt that consistency wasddestween training and
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test sets. Test set SMILES were aromatised where appropriate by replacing alternating@itdgebond

SMILES codes with alternative SMILES containing explicit aromatic bonds; these changes affected 44/100
and 8/32 compounds in # respective test sets. Once these changes had been made, the same CDK
descriptors as detailed above were calculated for all 132 test compounds. Given that all those methods
requiring descriptor scaling had now been eliminated from consideration, no gescscaling or feature
selection were performed. The same trained versions of the classifiers were used here as tested on the
internal validation set, models that had alreaolgentrained on the original 11-¢ompound training set.

The Random Forest, EatiTrees, and Bagging predictors were used to predictSlémy each of the
compounds in the sets of 100 and 32 molecules. Bagging predictions were not used in their own right, but
only to contribute to the Vox Machinarum predictor. For each compound, tpredictions were obtained,
one from each of the three trebased classifiers. The median of these three predicted values was used as
the Vox Machinarum prediction for that compound. Three sets of (100 + 32) predictions were then
submitted to the 2019 Sohility Challenge, one each for Vox Machinarum, Extra Trees, and Random
Forest. These sets of predictions are given in full in Tables A1 & A2.

2019 Solubility Challengself-assessment on (89 + 2&)mpounds

After these three entries had been submitted the 2019 Solubility Challenge, a smdsessment
exercise was carried out. This required sourcing a single literature solubility for as many as possible of the
132 test compounds. In addition to the 52 values for test compounds that we had previoubigezkc
from our training set, a further 63 literature values were uncovered. Thus, solubility values were acquired
for 89 compounds from the lowariance set and 26 compounds from the higiriance set, and the set of
predictions assessed over these values.

For the tight lowvariance set, we found that Extra Trees was the most successful method on all five of
the criteria shown in Table 2, with an RMSE of 0.89Slagjts over the 89 compounds for which we had
data. Encouragingly, the three methods thatdhlaeen most successful on the internal validation set, and
hence had been submitted to the Challenge, were again the top three ahead of Bagging in this exercise.
The predictions are plotted against literature solubilities for Extra Trees in FiglRantion Forest in
Figure Al, Vox Machinarum in Figure A2, and Bagging in Figure A3.

For the 26 available compounds from the loose highiance set, results are shown in Figure 2 for Extra
Trees, Figures AA46 for other predictors, and Table 3. It is somewhatpsising that Bagging, which we
had considered our fourth best predictor, obtained the best results for the loose setntihelly similar
Vox Machinarum and Random Forest classifiers were in a ghosh for second place and Extra Trees
was only fourh best. The RMSE values were notably higher, that is worse, for the loose set than for the
tight set, and the proportions of compounds accurately predicted were correspondingly lower.
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Extra Trees v Literature logS for 89 Compounds from the Tight Test Set
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Table 2 Statistical ealuations of predictions for the Extra Trees, Random Forest and Bagging predictors and for the

Vox Machinarum consensus classifier over our sourced literature logS values (see Table Al for references) for 89
compounds from the 2019 Solubility Challengehtigest set of 100 molecules. The Vox Machinarum predictions
NBLR2NISR KSNB 6SNB (KS YSRAlLY 2F GKS 2GKSNJ GKNBS Ofl aa
2T GKS yo O8valuiz dzyl Ra2ere fardl 3n subsequent tables, SBIues are calculated using the
denominator N for consistency with the definition of RMSE. This is equivalent to calculating the standard deviation

of a small set of solubilities rather than using the Bessel correction to emulate the properties of theahdaiger

distribution from which they might be drawn.

Method RMSE  RMSE/SD  AAE R Ermr<05 Emr<1.0
Extra Trees 0.897 0.814 0.670 0.363 46 (52%) 70 (79%)
Random Forest 0.958 0.869 0.739 0.305 40 (45%) 67 (75%)
Bagging 1.009 0.915 0.785 0.277 35 (39%) 59 (66%)
Vox Machinarum 0.945 0.858 0.726 0.319 41 (46%) 67 (75%)

Table 3.Statistical evaluations of predictions for the Extra Trees, Random Forest and Bagging predictors and for the

Vox Machinarum consensus classifier over our sourced literatureVialg®@s (see Table A2 for references) for 26
compounds from the 2019 Solubility Challenge loose test set of 32 molecules. The Vox Machinarum predictions
NBLIZNGISR KSNB 6SNB G(GKS YSRAIY 2F GKS 20KSNJ ddeM&Biéh Of I aa
2F GKS Hc O02YLRdzyRAQ t23{ @ItdzSa Aa Hdnnc®d

Method RMSE  RMSE/SD  AAE R Err<05 Err<1.0
Extra Trees 1.716 0.856 1.226 0.349 7(27%) 12 (46%)
Random Forest 1.619 0.807 1.160 0.427 7(27%) 15 (58%)
Bagging 1.558 0.777 1.119 0.482 7(27%)  16(62%)
Vox Machinarum 1.617 0.806 1.158 0.429 7(27%) 15 (58%)

2019 Solubility Challengself-assessment on (100 + 3@mpounds

Following the completion of this first sedssessment exercise, Avdeef published a pap&DMET &
DMPKwhich revealed théP3 2t R a4 F yYRIF NRQ I @SN 3S az2fdzoAftAiie g
[45]. This facilitated the repetition of the previous safisessment exercise on the full sets of 100 and 32
compounds.

For the 108compound tight set, the relative perforamces of the classifiers ranked in the same order
as they had done previously: Extra Trees first, then Vox Machinarum, Random Forest, and lastly Bagging.
However, most measures of classifier quality consistently declined, thougRthalues were better dr
| JRSSTQa a2t dzoAftAGASA 20SN) mnn 6@ 85LGRtzyI Zompdandy, F 2 N
the Random Forest predicted solubility was the second highest of the three individual classifiers, and thus
equivalent to the Vox Machinarum medianediction. Results are shown inbilla 4 for all classifiers, Figure
3 for Extra Trees, Figure A7 for Random Forest, Figure A8 for Vox Machinarum, and Figure A9 for Bagging.

Table 4.Statistical evaluations of predictions for the Extra Trees, RandomtFammdsBagging predictors and for the

+2E al OKAYl Ndzy O2yaSyadz Of | aa ASFfar 2INIORcgnspdlinds com@iSingeha | gS N
2019 Solubility Challenge tight test set of 100 molecules. The Vox Machinarum predictions reported hethever
YSRAIFLY 2F (GKS 20KSNJ GKNBES Of I aaAFASNEQ LINBRAOGAZ2YyA F2N
logS values was 1.266.

Method RMSE  RMSE/SD  AAE R Ermr<05 Emr<1.0
Extra Trees 0.946 0.748 0.720 0.527 45 (45%) 75 (75%)
Random Frest 0.989 0.781 0.765 0.494 44 (44%) 70 (70%)
Bagging 1.023 0.808 0.815 0.481 38 (38%) 65 (65%)
Vox Machinarum 0.977 0.771 0.754 0.507 46 (46%) 69 (69%)

We noted a significant dependence of outcome on the choidadi¥idual source datapoint for a g
compound. For example, the difference in solubilities for tamoxifen between two possible literature
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sources, logs=-8.49 [31] and logS= +0.87 [48], is large enough to impact substantially on prediction
statistics, and especially so given both theafinsize of the test set and the larger contribution of
compounds with numerically bigger errors to the reported RMSE. Further, the literature valog $f -
7.77 [48] for bisoprolol makes it a large outlier, with predicted values all between 1.86 .80¢ this
impression was reinforced by the value of IBg 2.09 later given by Avdeef [45] as the average of three

SELISNRAYSyYyil f

RSGSNXYAYIFGA2yao

2S aSS yz2

NEBIF &2y

compounds do indeed have a wide rangereported log S values, the effect of any erroneous, or
erroneously interpreted or transcribed, datapoints may remain even if averages of experimental values are
used. Better approaches may be either to take a median, or else to invest considerableiscifatif in
looking at the validity of each experiment, as Avdeef [46] has done, and then picking either a single most

trusted datapoint or else an average of only those considered trustworthy. The high level of similarity

between the Random Forest and ¥dachinarum results for this test set is a consequence of the
frequency with which the Random Forest predictions fall in between those of Extra Trees and Bagging and
hence become the median predicti@rthis occurs for 22 of the 32 compounds.

Extra Trees v Avdeef logS for the 100 Compound Tight Test Set
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The majority of the change in prediction quality between thosed® literature solubilities in Table 2
and for 100 Avdeef solubilities in Table 4 is already seen when the Avdeef solubilities are used for the
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and Table4 makes relatively little difference to the prediction quality. Over the 89 compounds, the slight

deterioration in RMSE between Tables 2 on the one hand and Tables 4 & A4 on the other is almost exactly
in line with the increase in the standard deviatiortloé experimental logvalues.
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Table 5, and in Figure 4, Figure A10, Figure A1l and Figure Al12 for Extra Trees, Random Forest, Vox
Machinarum and Baggj, respectively. Vox Machinarum (RMSE = 1.490) and Random Forest (RMSE =
1.495) classifiers are the two best for this set, and for the reasons discussed previously perform almost
identically well. Bagging, which has the best results for the literaturabdiies of 26 of these 32
compounds in Table 3, is now the least successful predictor. However, the differences in performance
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between the predictors here are small and unlikely to be significant. If we compare predictions with the
Avdeef solubilities foonly those 26 compounds where literature data were also available, Table A5, the
performance of the four predictors is almost equal. The modest advantage that Bagging had displayed
when using literature solubilities for the same 26 compounds as growntl tlisappears when Avdeef
solubilities are instead used for comparison.

Extra Trees v Avdeef logS for the 32 Compound Loose Test Set
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-1.00

-2.00 o

3.00 ° 0,.
7 . I
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Table 5.Statistical evaluations of predictions for the Extra Trees, Random Forest and Bagging predictors and for the
+2E al OKAyYy Il Ndzy O2yaSyadz OfSvaluasii) foSalB22cahthouhds @DRBISHE e | FS N
2019 Solbility Challenge loose test set of 32 molecules. The Vox Machinarum predictions reported here were the
YSRAIFLY 2F GKS 20KSNJ 6KNBS OflFraaAFTASNAQ LINBRAOGAZ2Yya T2N
log Svalues was 2.142.

Method RMSE  RME/SD AAE R Err<05 Er<1.0
Extra Trees 1.517 0.708 1.103 0.680 10 (31%) 19 (59%)
Random Forest 1.495 0.698 1.109 0.700 10 (31%) 18 (56%)
Bagging 1.549 0.723 1.160 0.708 8 (25%) 17 (53%)
Vox Machinarum 1.490 0.696 1.097 0.712 11 (38%) 18 (56%)

It is clear from both the 89 v 26 and the 100 v 32 tight versus loose set comparisons that the tight set is
better modelled in terms of the error measures such as RMSE, and also the proportions of correct
predictions within 0.5 or 1.0 logS units. The ince=ag1 RMSE between the 100 and 32 compound tight
and loose sets are in fact proportionately smaller than the increases in the standard deviations of the sets
themselves, such that the RMSE/SD ratios are marginally smaller for the loose set. Modellous¢hset,
however, produces a betteR. The observation concernini§ can be explained by the larger range of
extreme solubilities in the loose set, whose maximum and minimum values differ by 9.16 logS units
compared with a range of only 5.61 for the tiglet.

Literaturevs. Avdeefsolubilities for (89 + 260ompounds

The literature and Avdeef [45] solubilities were compared over the available sets of 89 compounds from
0KS WiA3IKGIQ aSd FYyR Hc Y2t SOdz S& T NBM inFigue 5fadd2 4 S
Figure 6.
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Literature v Avdeef logS for 83 Compounds from the Tight Test Set
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The correspondence between the two sets of experimental solubilities is clearly rather closer than the
fits of the models to either sets, comparing Table 6 with Tables 2 and 3. There were nine compounds in the
tight set and six in the I@® set where the literaturand Avdeef logSvalues differed by more than one
logSunit. For each of these, we checked for errors in our transcription of the literature values into our
database and found no such problems. However, we note a wide rangdjeerafture values for some
molecules. Within the tight set, for example, we found values for griseofulvin d40¢.25 [47] as used
in our literature set and4.83 [31], a range of 1.58. For haloperidol, the $y@lues of-4.43 [47] from our
literature set,-5.26 [48],-5.14 [49] and-5.77 [50], give a range of 1.34. Values-#0 and-4.70 for
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cisapride both in the collection [48], lead to a I&range of 1.30. This contrasts with the average inter
laboratory standard deviation of 0.17 I&units that Avdeef obtained for the tight set by careful analysis
of published experimental data. [45]

Table 6.Statistical evaluation of the correspondence between our sourced literature logS values (see Tables Al and

A2 for references) for 89 and 26 compourd®S 4 LISOG A @St & FTNRBY GKS wnmdgp {2fdzoAfA
aSda F3IFAyald | BRJ®SHSBED CAKSNI{IASH SING T dzZNB a2t dzoAf AGASa | NE
l RSSTQa Fa (GKS 32fR aidlyRIFINRO®

Set RMSE  RMSE/SD  AAE R Emr<05 Em<1.0
89 Tight 0.673 0.545 0.331 0.740 73 (82%) 80 (90%)
26 Loose 1.547 0.706 0.963 0.541 12 (46%) 20 (77%)

For the loose set, one published value of g -2.95 for amiodarone [48] is a big outlier and should
probably be discounted. The same collentcontains the alternative lo§=-7.17 [48], which is given as an
upper bound in [50], while our chosen literature value is $5g-8.17 [23]. For clofazimine, reference [48]
guotes three values of lo§of -3.70,-4.68 and-5.68, while our chosen étature value is5.80 [47]; thus
the range is 2.10 lo§units. Collection [48] gives values-df27,-4.09 and-2.48 for saquinavir, the range
0SAY3d MPT PP C2NI S| Ofog=F10.40) dlcdaRhinR 1983 -9.03), @l S Fravr
(5PpH VI | GRS ST Qa S[46Mhldes falndtsid@tBeNange $f literatde values in our data.

We have plotted the respective Extra Trees errors when modelling literature solubilities against those
obtained when modelling Avdeef solubilitieskigure A13 for 89 compounds from the tight set and Figure
Al4 for 26 compounds from the loose set. These data show that each set of solubility data is better
modelled against either source for similar numbers of compounds. For seven of the 89 compoends th
literature solubilities are better modelled by 0.5 I&gnits or more, and for five such compounds Avdeef
[45] solubilities are similarly better modelled by at least half a unit. For the 26 compounds in the loose set,
six are better modelled against dacource of solubilities. However, bisoprolol is a large outlier as
discussed above, and use of the Avdeef solubility value seems preferable.

Possible se ofmodelling toidentify erroneoussolubilities

The typical workflow in solubility modelling istitke the experimental solubility data as a gold standard
and test computational methods against them. However, in the 2008 Solubility Challenge indomethacin
was consistently amongst the worst predicted compounds, with only four of the 99 predictions coming
within half a logSunit of the ground truth solubility value provided [25]. This led to @appraisal of the
experimental CheqSol solubility, and to the realisation that indomethacin had in fact hydrolysed under the
experimental conditions used. Thusgtsolubility value provided was corrected by Comeal. [51] using
a revised CheqgSol protocol. In this work, only three models all based on similar methodologies and
identical descriptors have been used, so the weight of evidence could not approaasf 8&independent
predictors. However, when the full results of the 2019 Solubility Challenge are available and analysed, it
can be anticipated that any consistently poorly modelled solubilities should be revisited. In the case of
bisoprolol, only a singlliterature value was found in a secondary source for ourasdéssment. Clearly,
| RSSTQa | LILINRI OK 2F OFNBTFdzA FylFfeara 2F SELISNRYS
as an outlier.

I NB | gdRubilfiesletier tianliterature ones?

Nonetheless, it does not necessarily follow that the carefully curated Avdeef solubilities [45] are clearly
better in all respects than literaturbarvested ones, especially once clear outliers are identified. In [52] we
showed that models trainednd tested on supposedly more accurate experimental solubility data were no
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better than corresponding models based on data harvested from the literature. In the present paper we

are comparing only testing on different sets, but again there appears nio¢ @any significant difference in

quality between results obtained against largely literatité NS A G SR wonIntInyIpoXpr
[45] solubilities. However, around one third of our literature solubilities are from CheqSol experiments
[23,25] orpinally performed for the 2008 Solubility Challenge and would have been considered part of the
accurate set in the context of [52].

We have firstly demonstrated in this paper that models of the tight-i@siance set give a substantially
better RMSE and ate correct predictions than do models of the loose higiiance set, and we secondly
note that competently executed models in the literature [3,4;19%21-23,25,27,28,45] typically give RMSE
values of between 0.7 and 1.1 |&units. We interpret the tw observations as indicating that some test
sets are harder to model than others. Indeed, we believe that different test sets of compounds can differ
substantially in difficulty of prediction. However, the respective comparisons of Avdeef solubilities here
and ChegSol solubilities in [52] with literatdnarvested data suggest that there is little obvious difference
in quality, as expressed by easkmodelling, between different solubility compilations covering identical
sets of compounds, at least oncewtiusly erroneous or outlying experimental data points are removed.

How accurate areexperimentalsolubilities?

We might reasonably conceive of error in quoted solubilities as comprised loosely of three components.
The first is gross errors, which arer@s of kind rather than degree. This could include performing the
experiment on the wrong compound, for example due to an unanticipated chemical reaction in the assay,
as happened for indomethacin in [25] and was duly corrected in [51]. This might elisdertypographical
errors such as reporting Idg=-1.74 as log=-7.41, measuring the solubility of the wrong charged form of
a compound, wrongly interpreting second hand experimental data, or mistaking kinetic for equilibrium
solubilities as discusdein [24]. The second is systematic errors, which might arise between different
experimental protocols such as shake flask versus CheqSol, ignoring small inconsistencies in temperature
by treating 20cC, 25cC and 30C as equivalent, measuring solubiltign pure solvent by approximating
from different cosolvent concentrations, or accepting data from a slightly wrong pH. The third is random
error between different repetitions of the same experimental protocol in the same laboratory, which is
clamedtobeaslowr & pndnp f23{[23PzyAda F2NI/ KSI|j{2f

| JRSSFTQa 62N] RAOGARSR GKS GSaid az2tdoAftAGASa Ay
t22aS aSdi o6pndcH 23{ dzyAGdaved ¢KS 22aS a&agsR. Aa 21
The tight set is claimed to be considerably more accurate than that and clearly required considerable effort
in its curation. [45,46] Our results here indeed demonstrate that the tight set generates substantially
smaller RMSE values and more c@rié¢ LINBSRAOGA2ya i 020K (GKS pnop Iy
loose set. However, our comparison of 89 literature versus Avdeef solubilities for the tight set echoes
reference [52] in suggesting that a literatuharvested compilation of solubiiigs for a given group of
compounds does not generate manifestly worse models than does a carefully curated one or a newly
consistently measured one. While the respective Avdeef [45] and CheqSabJ22] solubilities may
ultimately prove to be more accurathan literatureharvested sets for the same compounds, it is beyond
the power of currently used machine learning modelling methods to demonstrate this unambiguously.
What is clear is that Avdeef [45] has at the very least identified avemance set beasierto-model
compounds and a highariance set of hardeto-model molecules.

How accurate aregood predictivesolubility models?
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As a simple thought experiment, we allow could ourselves to believe that there is ultimately a ground
truth intrinsic aquieous solubility for the stablest crystalline polymorph of any given compound. The
reported error of a model is its error in reproducing the reported experimental solubilities. This will be
some combination of the error of the model in predicting the grduruth, and the error of experiment in
matching up to the same ultimate true solubilities. If these errors were hypothetically independent, we
would approximately expect the squares of the components to be additive over reasonably large datasets,
as withthe variances of independent normal distributions or the opposite and adjacent sides of a right
angled triangle. Experience of the fieldl4,1523,25,27,28,45] suggests that good models typically have
RMSEs of 0.7 to 1.1 logS units depending on the uiffiof the test sets, as noted above. If the lower
estimate of around 0.17 logS units based on the tight set truly reflects the likely accuracy of good
experimental data, then there is considerable remaining scope for models to improve beyond theirt curren
level of accuracy. If, however, the accuracy of typical solubility data on which models have been trained
and tested is in general closer to the 0.62 logS of the loose set, then existing models have only limited
scope for further improvement [28Detaiked analysis of the results of the 2019 Solubility Challenge should
help to resolve this question.

Finally, it is hoped that some of the various first principles methatder development [BL1] are in
due coursetested2y ! GRSSTQa RI ( reasSnabiy>sized Bits.2A¢ yeti MASH Have Nbken
validated on only a handful of compounds.

Conclusions

Three Machine Learning models were submitted to the 2019 Solubility Challenge. One was based on
Extra Trees, one on Random Forest, and the third was a wsuseclassifier which we call Vox
Machinarum. The results weranalysed for the lowariance tight set of 100 compounds and the loose
high-variance set of 32 compounds recently published by Avdeef. On the tight set, the Extra Trees method
performed best wh an RMSE of 0.946 over 100 compounds. For the loose set, the Vox Machinarum
(RMSE = 1.490) and Random Forest (RMSE = 1.495) classifiers are best and perform almost equally well
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Appendix

Table Al.Predicted and gperimental logS values for thelow-variance 106&compound test set. ET Extra Trees

ADMET & DMP8(3) (2R0) 215-250

prediction; RF Random Forest predictio8G Bagging pediction; VM: Vox Machinarum predictigriLIT: Literature

sourced logs REFReference for LITvaludYY | GRSSTQ& | GSNA5|AS &2f dzoAf Al @
Compound ET RF BG VM LT REF AV
Acetazolamide -2.39 -2.36 -2.33 -2.36 -2.44 [23] -2.38
Acetylsalicylic Acid -2.21 -2.20 -2.06 -2.20 -1.74 [30] -1.67
Alclofenac -3.20 -3.00 -3.04 -3.04 -3.13 [30] -4.40
Ambroxol -2.90 -3.06 -3.09 -3.06 -3.87
Aripiprazole -4.63 -4.99 -5.01 -4.99 -6.64
Atovaquone -4.90 -5.83 -5.98 -5.83 -5.93 [53 -6.07
Atrazine -2.86 -2.53 -2.30 -2.53 -3.49 [47] -3.69
Baclofen -2.52 -2.37 -2.26 -2.37 -1.70 [47] -1.78
Barbital,Buta -2.21 -2.48 -2.52 -2.48 -2.23 [30] -2.22
Benzthiazide -4.02 -3.88 -3.77 -3.88 -4.83 [25] -4.84
Bromazepam -3.75 -3.72 -3.57 -3.72 -3.48 [30] -3.39
Candesartan Cilexetil -6.24 -6.43 -6.16 -6.24 -6.79
Carbamazepine -4.14 -3.99 -3.81 -3.99 -3.29 [47] -3.22
Carbazole -2.70 -3.03 -3.35 -3.03 -5.27 [53] -5.19
Carbendazim -2.73 -2.63 -2.56 -2.63 -4.52 [48] -4.56
Cefmenoxime -3.20 -3.06 -2.87 -3.06 -3.27
Cefprozil -2.92 -2.84 -2.81 -2.84 -1.68
Celecoxib -4.88 -4.86 -4.86 -4.86 -4.74 [48] -5.89
Cephradine -2.87 -2.79 -2.79 -2.79 -1.22 [48] -1.18
Chlorpropamide -3.22 -3.14 -3.00 -3.14 -3.25 [23] -3.17
Cholic Acid,Deoxy -4.32 -4.53 -4.87 -4.53 -3.79 [48] -4.62
Cilostazol -3.55 -3.52 -3.55 -355 -4.93
Cimetidine -2.46 -2.39 -2.21 -2.39 -1.69 [23] -1.52
Ciprofloxacin -3.03 -3.19 -3.34 -3.19 -3.60 [23] -3.57
Cisapride -3.72 -3.61 -3.48 -3.61 -4.70 [48] -6.78
Corticosterone -3.50 -3.22 -2.85 -3.22 -3.24 [30] -3.29
Cortisone Acetate -3.27 -3.09 -2.75 -3.09 -4.21 [30] -4.22
Cyclosporine A -4.81 -4.53 -4.80 -4.80 -4.48 [48] -5.03
Daidzein -4.16 -3.97 -3.90 -3.97 -5.23
Desipramine -4.04 -3.92 -3.93 -3.93 -3.63 [23] -3.83
Dexamethasone -3.36 -3.14 -2.76 -3.14 -3.59 [30] -3.56
Diazoxide -2.98 -3.03 -3.17 -3.03 -3.36 [23] -3.43
Diclofenac -5.30 -4.91 -4.85 -4.91 -5.46 [23] -5.34
Diflorasone Diacetate -3.69 -3.37 -3.17 -3.37 -4.88 [48] -4.82
Difloxacin -4.13 -5.06 -4.96 -4.96 -3.60 [23] -3.83
Diltiazem -4.06 -3.87 -3.65 -3.87 -3.16 [23] -3.02
Diphenylamine -2.70 -2.60 -2.64 -2.64 -3.50 [53] -3.53
DOPA L -2.27 -2.17 -2.07 -2.17 -1.82 [47] -1.76
Enalapril -2.74 -3.00 -3.01 -3.00 -1.25 [30] -1.36
9A0GNI RAZ2E IV -4.27 -4.29 -4.53 -4.29 -4.84 (48] -5.00
Estrone -4.61 -4.14 -3.89 -4.14 -5.32 [54] -5.38
Ethoxzolamide -2.95 -2.80 -2.88 -2.88 -4.40 [48] -3.76
Etoposide -4.06 -3.65 -3.03 -3.65 -3.57 [53] -3.60
Eucalyptol -1.88 -2.25 -2.71 -2.25 -1.64 [53] -1.66
Fenbufen -3.53 -3.56 -3.54 -3.54 -5.26 [30] -5.18
Flumequine -3.78 -3.55 -3.61 -3.61 -3.73 [23] -3.90
Flurbiprofen -4.16 -4.13 -4.28 -4.16 -4.15 [23] -4.34
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Folic Acid -3.32 -3.08 -2.93 -3.08 -5.25 [25] -5.96
Ganciclovir -2.81 -2.75 -2.89 -2.81 -1.85 [48] -1.78
Glipizide -3.78 -3.67 -3.69 -3.69 -5.49 [23] -5.61
Griseofulvin -3.34 -3.05 -3.07 -3.07 -3.25 [47] -4.52
Haloperidol -4.02 -3.93 -4.17 -4.02 -4.43 [47] -5.71
Ibrutinib -4.96 -4.75 -4.73 -4.75 -4.85
Indinavir -5.49 -4.66 -4.07 -4.66 -3.94 [48] -4.53
Indomethacin -4.60 -4.75 -4.44 -4.60 -4.61 [51] -5.48
Indoprofen -3.97 -3.98 -3.88 -3.97 -4.82 [30] -4.65
Ketoconazole -5.05 -4.93 -5.05 -5.05 -3.80 [30] -5.47
Maprotiline -4.53 -4.90 -5.25 -4.90 -4.69 [23] -4.62
Metolazone -4.15 -3.93 -3.87 -3.93 -3.78 [53] -3.88
Nabumetone -3.51 -3.38 -3.21 -3.38 -4.58 [48] -4.40
Naproxen -3.63 -3.53 -3.40 -3.53 -4.50 [23] -4.23
Nelfinavir -4.92 -5.11 -5.27 -5.11 -1.91 [48] -6.21
Nevirapine -3.79 -3.68 -3.65 -3.68 -3.19 [30] -3.41
Nifedipine -3.99 -3.56 -3.63 -3.63 -4.76 [53] 4,71
Nimesulide -3.86 -3.70 -3.77 -3.77 -4.34 [48] -4.74
Norfloxacin -3.09 -3.28 -3.40 -3.28 -2.76 [23] -2.88
Nortriptyline -4.29 -4.21 -4.62 -4.29 -4.02 [23] -3.93
Noscapine -4.05 -4.18 -4.02 -4.05 -3.14 [48] -4.48
Ofloxacin -2.96 -3.14 -3.43 -3.14 -1.27 [23] -2.03
Oxazepam -3.94 -3.80 -3.84 -3.84 -3.95 [30] -4.03
Oxyphenbutazone -3.53 -3.41 -3.47 -3.47 -3.73 [53] -3.94
Papaverine -4.26 -4.32 -4.33 -4.32 -3.87 [23] -4.33
Perphenazine -4.38 -4.80 -4.68 -4.68 -4.16 [47] -4.48
Phenacetin -2.27 -2.02 -1.71 -2.02 -2.37 [47] -2.30
Phenazopyridine -3.12 -3.08 -3.07 -3.08 -4.19 [23] -4.02
Pindolol -2.74 -2.81 -2.73 -2.74 -3.79 [23] -3.75
Pravastatin -3.34 -3.42 -3.40 -3.40 -4.86
Prednisolone,Methyl -3.48 -3.20 -2.82 -3.20 -3.62 [48] -3.33
Primidone -2.66 -2.81 -2.60 -2.66 -2.64 [47] -2.53
Probenecid -2.99 -2.86 -3.04 -2.99 -4.86 [25] -4.83
Promazine -4.69 -4.77 -4.96 -4.77 -4.30 [30] -4.45
Promethazine -4.68 -4.94 -5.02 -4.94 -4.30 [30] -4.38
Repaglinide -4.27 -4.67 -5.16 -4.67 -3.70 [48] -4.77
Resveratrol,trans -3.47 -3.39 -3.33 -3.39 -3.75
Ritonavir -5.65 -5.46 -5.06 -5.46 -5.16 [48] -5.17
Rofecoxib -4.22 -4.18 -4.14 -4.18 -4.58 [48] -4.61
Spironolactone -4.27 -3.98 -3.68 -3.98 -4.17 [47] -4.21
Strychnine -3.69 -3.67 -2.79 -3.67 -3.33 [47] -3.38
Sulfasalazine -4.64 -4.41 -4.60 -4.60 -6.14 [23] -6.41
Sulfathiazole -3.06 -3.06 -2.75 -3.06 -2.69 [23] -2.62
Sulfisomidine -2.86 -2.94 -2.86 -2.86 -2.30 [48] -2.16
Sulfisoxazole -3.17 -3.04 -2.89 -3.04 -3.50 [48] -3.13
Sulindac -4.44 -4.60 -4.56 -4.56 -4.50 [23] -4.96
Tetracaine -2.69 -2.53 -2.52 -2.53 -3.01 [23] -3.11
Tetracycline -3.19 -3.23 -3.08 -3.19 -2.93 [23] -3.22
Thiacetazone -2.76 -2.37 -2.11 -2.37 -3.50
Triamcinolone -3.36 -3.08 -2.84 -3.08 -3.69 [30] -3.52
Triamterene -3.40 -3.24 -3.05 -3.24 -3.95 [47] -4.11
Warfarin -4.02 -3.94 -4.03 -4.02 -4.78 [23] -4.78
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Xanthine -3.39 -2.90 -2.50 -2.90 -3.61 [48] -3.60
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Table A2 Predicted and xperimental logS values for thehigh-variance 32compound test set. ET Extra Trees
prediction; RE Random Forest predictio8G Bagging mediction; VM: Vox Machinarum predictior;IT. Literature
sourced logs REFReference for LITvaluW ! GRSSTQa | GSNA5AS a2t dzoAf AGe @I f dzS:

Compound ET RF BG VM LT REF AV
Amantadine -2.17 -2.54 -3.04 -2.54 -1.85 [23] -2.19
Amiodarone -5.09 -5.60 -5.80 -5.60 -8.17 [23] -10.40
Amodiaquine -4.62 -4.90 -4.88 -4.88 -5.79 [23] -5.49
Bisoprolol -1.86 -2.09 -2.30 -2.09 -7.77 [48] -2.09
Bromocriptine -4.96 -4.65 -4.50 -4.65 -5.50 [48] -5.50
Buprenorphine -4.51 -4.29 -3.92 -4.29 -4.37 [30] -6.07
Chlorprothixene -5.09 -5.32 -5.63 -5.32 -6.75 [23] -5.99
Clofazimine -6.88 -6.61 -5.95 -6.61 -5.80 [47] -9.05
Curcumin -3.85 -3.59 -3.68 -3.68 -5.36
Danazol -4.37 -4.38 -4.64 -4.38 -5.51 [53] -6.10
Didanosine -2.81 -2.71 -2.78 -2.78 -0.94 [47] -1.24
Diflunisal -4.55 -4.33 -4.44 -4.44 -5.94 [25] -4.99
Diphenhydramine -3.39 -3.20 -3.12 -3.20 -2.95 [23] -3.21
Etoxadrol -2.81 -2.99 -3.01 -2.99 -2.60 [48] -1.96
Ezetimibe -5.40 -5.60 -5.33 -5.40 -4.94
Fentiazac -5.06 -5.15 -5.04 -5.06 -4.02 [48] -5.84
lopanoic Acid -3.88 -4.07 -4.47 -4.07 -5.48 [47] -5.49
Itraconazole -6.34 -6.39 -5.90 -6.34 -8.98
Miconazole -5.07 -5.33 -5.63 -5.33 -5.07 [23] -5.82
Mifepristone -5.03 -5.35 -5.30 -5.30 -5.90 [50] -5.22
Omeprazole -3.62 -3.31 -3.08 -3.31 -3.42 [30] -3.70
Pioglitazone -3.65 -3.54 -3.62 -3.62 -6.20
Procaine -2.86 -2.59 -2.35 -2.59 -1.72 [23] -2.30
Quinine -2.85 -3.10 -3.29 -3.10 -2.79 [23] -3.06
Raloxifene -6.56 -6.50 -6.17 -6.50 -6.82
Rifabutin -5.09 -4.82 -4.61 -4.82 -3.65 [48] -4.09
Saquinavir -4.94 -4.49 -4.29 -4.49 -4.27 [48] -5.92
Sulfadimethoxine -3.09 -3.00 -2.96 -3.00 -3.83 [48] -3.74
Tamoxifen -5.73 -5.79 -5.79 -5.79 -8.49 [31] -7.52
Telmisatan -6.73 -6.82 -6.17 -6.73 -6.73
Terfenadine -6.23 -6.02 -5.90 -6.02 -7.74 [25] -7.74
Thiabendazole -2.59 -2.73 -2.86 -2.73 -3.48 [25] -3.97
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Table A3Measures of Descriptor Importance. The randomForest package [37] was used to measure tharno®gort
of the 173 descriptors based on their individual effects on Mean Squared Error (MSE)-tdrbaugt predictions of
the training set, and on Node Purity. We also rank the descriptors according toRftme#asure of correlation with
the training set Ig Svalues. Any descriptor in the top 35 based on MSE or in the top 10 for another measure is
listed. Definitions of descriptors are available from reference [55]
%IncMSE Rank MSE IncNodePurity Rank Pure RvlogS  RankR

XLogP 20.95 1 52.36 1 0.47 1

ALogP 14.92 2 23.29 3 0.26 25
AlLogp2 14.85 3 26.79 2 0.40 3

MDEG23 9.23 4 18.09 4 0.42 2

VCH7 7.23 5 5.40 5 0.06 84
ATSc3 7.03 6 3.42 14 0.03 94
SP@® 6.44 7 4.04 11 0.17 54
SPe&A 6.30 8 2.85 20 0.13 66
MDEG33 6.29 9 4.87 8 0.11 69
TopoFSA 5.98 10 1.38 57 0.02 102
VR2 5.66 11 1.78 47 0.20 45
khs.aaCH 5.30 12 4.62 9 0.21 43
ATSm3 5.29 13 0.94 72 0.18 52
ATSp4 5.26 14 3.46 13 0.29 19
VG5 5.26 15 2.00 33 0.08 79
C2SP2 5.23 16 4.99 7 0.32 8

SR6 5.20 17 2.60 23 0.30 11
SG5 5.03 18 1.90 39 0.06 83
ATSM4 4.96 19 2.47 26 0.21 40
VPG4 4.93 20 1.23 63 0.13 64
ATSp2 4.60 21 1.49 56 0.30 13
ATSm5 4.53 22 3.79 12 0.21 41
SG3 4.51 23 0.93 75 0.06 82
naAromAtom 4.47 24 2.87 19 0.27 20
BCUTgLh 4.42 25 1.99 35 0.25 31
SR5 4.41 26 3.30 15 0.32 6

SP4 4.40 27 1.65 51 0.30 17
khs.aasN 4.37 28 1.82 43 0.05 90
ATSm1 4.34 29 1.35 58 0.05 91
SR7 4.33 30 251 25 0.30 12
VR6 4.26 31 1.96 36 0.22 39
MW 4.21 32 2.07 31 0.20 44
VPG6 4.19 33 3.21 16 0.15 61
ATSB 4.18 34 2.75 21 0.29 18
VRO 4.17 35 1.88 40 0.22 38
C3sP2 3.72 42 4.20 10 0.37 5

nRings6 3.64 43 5.01 6 0.37 4

WTPT2 3.04 58 3.19 17 0.32 7

MLogP 1.88 87 2.53 24 0.31 9

VAdjMat 0.38 127 0.27 127 0.30 10
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Table Al Statistical evalations of predictions for the Extra Trees, Random Forest and Bagging predictors and for the

O f Svalues B Kob tNé 88 godpuundsiers BF2DE | @S N
Solubility Challenge tight 1a@olecule test set whee literature solubilities were also available. The Vox Machinarum

iKS 20K

+2E al OKAY Il Ndzy O2y &Syadza

LINBRAOGAZ2Yya NBLER2NISR KSNBE 6SNBE GKS YSRAlLY 2F

a0 yRFNR RSGOAIF A2y SHafuesliskl833y ¢ O2YLRdzyRaQ f 23
Method RMSE RMSESD AAE Err<05 Err<1.0
Extra Trees 0.929 0.753 0.697 0.505 42 (47%) 69 (78%)
Random Forest 0.982 0.796 0.748 0.459 41 (46%) 65 (73%)
Bagging 1.015 0.823 0.796 0.445 35(39%) 60 (67%)
Vox Machinarum 0.967 0.784 0.734 0.474 43 (48%) 64 (72%)

Table A. Statistical evaluations of predictions for the Extra Trees, Random Forest and Bagging predictors and for the
O f Svalued: B KoB tN@ 28 ZoSpaundsaias ®EF 208 | S N
Solubility Challengkose 32molecule test set where literature solubilities were also available. The Vox Machinarum

+2E al OKAY!l Ndzy O2yaSyadza

LINBERAOGAZ2Y & NBLR2NISR KSNB

s SNB

GKS YSRAlLY 2F

iKS

2 KSN.

Forest and Vox Machinarum predicted solillgs were identical for 21 out of these 26 compounds. The standard

RSOAIFGAZ2Y 2F (i KNaluexis 2021Y LR dzy R&aQ f 23
Method RMSE RMSE/SD AAE R Err<0.5 Err<1.0
Extra Trees 1.488 0.679 1.072 0.734 7 (27%) 16 (62%)
Random Forest 1.441 0.658 1.054 0.787 8 (31%) 15 (58%)
Bagging 1.479 0.675 1.083 0.770 7 (27%) 14 (54%)
Vox Machinarum 1.444 0.659 1.055 0.787 8 (31%) 15 (58%)
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Figure A1Random Forest predictions plotted against our sourced literatureSkjues (see Table Al for referenges
for 89 compounds from the 2019 Solubility Challenge tight test set of 100 molecules. Compounds with prediction
errors of under 0.5 (blue), 0.5 to 1.0 (green), 1.0 to 2.0 (orange), and over 2.0 logS units (red) are shown in their
respective colours. Thddxk diagonal line shows equality of predicted and experimental solubilities, while the grey
line is a line of best fit to the data.
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Vox Machinarum v Literature logS for 89 Compounds from the Tight Test Set
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Figure A2Vox Machinarum predictions plotted against our sourced literatureSeglues (see Table Al for
refereniSa 0 FT2NJ ydp O02YLRdzyRa FTNRY (KS Hnmdep {2fdoAtAde [/ KI¢
prediction errors of under 0.5, 0.5 to 1.0, 1.0 to 2.0, and over 2.0 logS units are respectively shown in blue, green,
orange and red. The black daml line shows equality of predicted and experimental solubilities, while the grey line
is a line of best fit to the data.
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Figure A3Bagging predictions plotted against our sourced literatureSuglues (see Table Al for references)
for 89 compainds from the 2019 Solubility Challenge tight test set of 100 molecules. Compounds with
prediction errors of under 0.5 (blue), 0.5 to 1.0 (green), 1.0 to 2.0 (orange), and over 2.0 logS units (red) are
shown in their respective colours. The black diagdinalshows equality of predicted and experimental
solubilities, while the grey line is a line of best fit to the data.
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Figure A4Random Forest predictions plotted against our sourced literatureShkgues (see Table A2 for references)
for 26 communds from the 2019 Solubility Challenge loose test set of 32 molecules. Compounds with prediction
errors of under 0.5 (blue), 0.5 to 1.0 (green), 1.0 to 2.0 (orange), and over 2.0 logS units (red) are shown in their

respective colours. The black diagolaé shows equality of predicted and experimental solubilities, while the grey
line is a line of best fit to the data. The large outlier is bisoprolol, as discussed in the text.
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Figure A5Vox Machinarum predictions plotted against our sourced ditere logSvalues (see Table A2 for
references) for 26 compounds from the 2019 Solubility Challenge loose test set of 32 molecules. Compounds with
prediction errors of under 0.5 (blue), 0.5 to 1.0 (green), 1.0 to 2.0 (orange), and over 2.0 logS unése(gdwbwn in
their respective colours. The black diagonal line shows equality of predicted and experimental solubilities, while the
grey line is a line of best fit to the data. The large outlier is bisoprolol, as discussed in the text.
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Bagging v Literature logS for 26 Compounds from the Loose Test Set
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Figure A6Bagging predictions plotted against our sourced literatureSuglues (see Table A2 for references) for 26
compounds from the 2019 Solubility Challenge loose test set of 32 molecules. Compounds with prediction errors of
under 0.5 (blue), 0.5 to 1.0 (gnek 1.0 to 2.0 (orange), and over 2.0 logS units (red) are shown in their respective
colours. The black diagonal line shows equality of predicted and experimental solubilities, while the grey line is a line
of best fit to the data. The large outlier is bgolol, as discussed in the text.
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Figure A7wl Y R2Y C2NBad LINBRAOUAZ2Yya IShakds fi5Hd theé 2019 Bofubiity ! ORSS T
Challenge tight test set of 100 molecules. Compounds with prediction errors of under 0.5 (blue)L@Xdreen), 1.0
to 2.0 (orange), and over 2.0 logS units (red) are shown in their respective colours. The black diagonal line shows
equality of predicted and experimental solubilities, while the grey line is a line of best fit to the data.
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1.0 to 2.0 (orange), and ov&r0 logS units (red) are shown in their respective colours. The black diagonal line shows

equality of predicted and experimental solubilities, while the grey line is a line of best fit to the data.
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Figure A9Bagging predictions plotted against A&lg Q& | ¢&valiesHS forftr@ 2019 Solubility Challenge tight
test set of 100 molecules. Compounds with prediction errors of under 0.5 (blue), 0.5 to 1.0 (green), 1.0 to 2.0 (orange),
and over 2.0 logS units (red) are shown in their respectiveucsl The black diagonal line shows equality of predicted

and experimental solubilities, while the grey line is a line of best fit to the data.
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Figure Alowl Y R2Y C2NBaid LINBRAOGA2ya [ShardsicRethé 2D198ebdity ! JRSST
Challenge loose test set of 32 molecules. Compounds with prediction errors of under 0.5 (blue), 0.5 to 1.0 (green), 1.0
to 2.0 (orange), and over 2.0 logS units (red) are shown in their respective colours. The black diagonal line shows
equality ofpredicted and experimental solubilities, while the grey line is a line of best fit to the data.
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