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Abstract 

The bioavailability of tetracyclines is markedly decreased when co-administered with antacids, milk, or food 
containing Ca

2+
. Previously, it was suggested that the effective intestinal permeation of tetracycline (TC) 

was decreased due to Ca
2+

 linked mucin binding in the mucosal side. In the present study, we investigated 
the effect of Ca

2+
, Mg

2+
, and mucin on the membrane permeation of six tetracyclines (TC, oxytetracycline 

(OTC), minocycline (MINO), doxycycline (DOXY), demeclocycline (DMCTC), and chlortetracycline (CTC)). The 
membrane permeability values (Pe) of tetracyclines were measured by the parallel artificial membrane 
permeation assay (PAMPA) using soybean lecithin – decane (SL–PAMPA) and octanol (OCT–PAMPA) 
membranes. In SL–PAMPA, Ca

2+
 markedly decreased the Pe values of all tetracyclines. In OCT–PAMPA, Ca

2+
 

increased the Pe values of TC, CTC, and DMCTC, but not DOXY, OTC, and MINO. Mg
2+

 decreased the Pe 
values of all tetracyclines in both SL–PAMPA and OCT–PAMPA (except for CTC in OCT–PAMPA). The 
addition of mucin had little or no effect in all cases. In contrast to the previously suggested mechanism, the 
results of the present study suggested that Ca

2+
 chelate formation decreased the membrane permeation of 

tetracyclines, irrespective of Ca
2+

 linked mucin binding. Molecular speciation analysis suggested that the 
permeation of TC – metal chelates was negligibly small in SL-PAMPA. 
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Introduction 

Co-administration of multivalent metal ions reduces the bioavailability of various drugs, such as 

tetracyclines, fluoroquinolones, HIV-integrase inhibitors, and platelet-stimulating agents [1–4]. For 

example, the bioavailability of tetracyclines is markedly decreased when co-administered with antacids, 

milk, and food containing Ca2+ [4–10]. It is generally accepted that chelate formation between tetracycline 

(TC) and Ca2+ is behind the observed decrease in the bioavailability of tetracyclines [11–16]. Chelate 

formation of tetracyclines has been extensively investigated (Ref. [17] and references therein). However, 

the exact mechanism of the Ca2+ effect on the bioavailability of tetracyclines has not been clear. 

Several ex-vivo and in-situ studies have shown that divalent metal ions, such as Ca2+, Mg2+, and Fe2+, 

reduce the intestinal wall permeation of tetracyclines [18–22]. In 1968, Kakemi et al. investigated the 
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effect of Ca
2+

 on the effective intestinal wall permeation of tetracycline (TC) using the rat small intestine 

[21,22]. They also measured the isopentanol – buffer partition coefficient as a surrogate of passive 

transcellular membrane permeability without the interference from mucin. They found that Ca2+ decreased 

the effective intestinal wall permeation of TC in the rat ex-vivo experiment, but increased the partition 

coefficient of TC. They also found that TC bound to the intestinal mucin layer in the presence of Ca
2+

. Based 

on these observations, they suggested that Ca
2+

 linked mucin binding decreased the TC concentration 

available for membrane permeation, resulting in a decrease in the effective intestinal wall permeation. 

Schumacher and Linn also reported that Ca
2+

 increased the transfer rate of TC from the aqueous phase to 

the octanol phase [23]. However, it is questionable whether these alcohol systems could be a good 

surrogate model for investigating the effect of divalent metal ions on the membrane permeation of drugs. 

Since divalent metal ions may affect cellular integrity, mucin-free cell-based systems such as Caco-2 have 

rarely been used to examine the effects of multivalent metal ions on membrane permeation [24,25]. 

The parallel artificial membrane permeation assay (PAMPA) has been widely used to assess the passive 

membrane permeation of a drug [26–29]. Phospholipid-based artificial membranes are most commonly 

used with PAMPA. PAMPA permeability correlates with the in vivo and cellular permeation of drugs better 

than the octanol-buffer partition coefficient [27,28]. Recently, we reported the permeation characteristics 

of tetracyclines in a phospholipid-based PAMPA [30]. Only a weak correlation was observed between the 

PAMPA permeability (Pe) and the octanol-buffer partition coefficients (log Doct) for tetracyclines, suggesting 

that chemoselectivity differs between these systems. However, the effects of divalent metal ions on the 

PAMPA permeation of tetracyclines have been unknown. 

The purpose of the present study was to investigate the effect of Ca2+, Mg2+, and mucin on the 

phospholipid-based PAMPA permeation of tetracyclines. Six tetracycline derivatives were used in this study 

(Figure 1). The physicochemical properties of these tetracyclines have been summarized in Table 1 [31–33]. 

 
Figure 1. Chemical structures of tetracyclines 

Experimental  

Materials 

Tetracycline hydrochloride (TC), decane, calcium dichloride, magnesium dichloride, octanol, pig 

stomach mucin, and 8 M NaOH were purchased from Wako Pure Chemical Industries, Ltd (Osaka, Japan). 
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Oxytetracycline hydrochloride (OTC), minocycline hydrochloride (MINO), and doxycycline hyclate (DOXY) 

were purchased from TCI (Tokyo, Japan). 2-Morpholinoethanesulfonic acid (MES) was purchased from 

Dojindo laboratories (Tokyo, Japan). Demeclocycline hydrochloride (DMCTC) and chlortetracycline 

hydrochloride (CTC) were purchased from LKT Labs, Inc (MN, USA). Soybean lecithin (SLP-white) was 

provided by Tsuji Oil Mills co., Ltd (Mie, Japan). 

Table 1. Physicochemical properties of tetracyclines 

 MW pKa log Doct (pH 6.5)
a
 pKa Ref. 

Chlortetracycline 479 3.3, 7.6, 9.3 -0.88 [31] b 

  3.25, 6.72, 8.84  [32]
 c
 

Demeclocycline 465 3.4, 7.4, 9.4 -0.67 [31]
b
 

Doxycycline 444 3.0, 8.0, 9.2 -0.08 [31] b 

  3.50, 7.25, 9.58  [32]
 c
 

Minocycline 457 2.8, 5.0, 7.8, 9.5 0.20 [33]
 d

 

Oxytetracycline 460 3.2, 7.5, 8.9 -0.96 [31]
 b

 

  3.53, 7.25, 9.58  [32] c 

Tetracycline 444 3.3, 7.8, 9.6 -1.09 [31]
 b

 

  3.35, 7.29, 9.88  [32] c 
a
 Measured by a shake-flask method. Ref. [30]. 

b
 Potentiometry (23 °C), ionic strength = 0.01 or 0.05 M. 

c
 Potentiometry (25 °C), ionic strength = 0.1 M. 

d
 Method not described in the literature. 

PAMPA assay 

The PAMPA sandwich was consisted of a 96 well filter plate (hydrophobic PVDF, 0.45 μm) and a PAMPA 

acceptor plate (Merck Millipore, MA, USA). Before forming the PAMPA sandwich, the bottom (acceptor) 

plate was filled with 300 μL of a 50 mM MES buffer (pH 6.5). The filter of the top (donor) compartment was 

coated with 5 μL of a 10 % soybean lecithin (SL) – decane solution or octanol. A drug solution (0.5 mM, 

200 μL) with or without a divalent metal ion (5 mM) and/or mucin (1 %) in the same buffer was added to 

the donor compartment. The PAMPA sandwich was then incubated for 3 h at 37 °C. After incubation, 

150 μL of both the donor and acceptor solutions were transferred to a UV plate. The concentrations of 

tetracyclines were measured at 360 nm. The PAMPA permeability (Pe) was calculated by the following 

equation [34]. 
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where Pe is the effective permeation coefficient (cm/s), A is the filter surface area (0.266 cm2), VD and VA 

are the volumes (mL) in the donor and acceptor phase, t is the incubation time, CD(t) is the concentration 

of a drug in the donor phase at time t, R is the membrane retention factor, and rv is the volume ratio. We 

confirmed that the phospholipid - decane membrane is stable during the experimental period (no leakage 

of impermeable substrate) (data not shown). 
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Results and discussion 

Previously, we reported that the Pe value of TC was markedly affected by the composition of 

phospholipids in PAMPA [30]. In this study, a soybean lecithin (SL, 10 %) – decane membrane (SL–PAMPA) 

was used because it most likely mimics the intestinal membrane [34]. The soybean lecithin contained 

phosphatidylcholine (24-32 %), phosphatidylethanolamine (20-28 %), phosphatidylinositol (12-20 %), 

phosphatidic acid (8-15 %), and lysophosphatidylcholines (1–5 %) (based on the product information 

provided by the manufacturer). In addition, an octanol membrane (OCT–PAMPA) [35,36] was also used 

because Ca
2+

 was reported to increase the log Doct of TC [23]. Since Ca
2+

 interacts with phosphate and 

citrate ions, MES buffer was used in this study. The concentration of Ca
2+

 was set to 5 mM based on the 

standard of the daily intake in food (600 mg) [37] and the gastrointestinal fluid volume in the fed state [38]. 

We previously reported that the Pe value of TC in SL-PAMPA was not affected by the ionic strength up to 2 

mol/L (adjusted by NaCl) [34]. 

In SL–PAMPA, Ca
2+

 and Mg
2+ 

markedly decreased the Pe values of all tetracyclines investigated in this 

study, whereas mucin showed little or no effect (Figure 2). These results suggest that, in contrast to the 

previous suggestion based on the alcohol–water partition coefficient [21–23], Ca2+ chelate formation 

decrease the membrane permeation of tetracyclines, irrespective of Ca2+ linked mucin binding.  

 
Figure 2. Effect of additives on SL–PAMPA permeation of tetracyclines (mean ± SD, n = 3 - 6). 

Molecular speciation analysis was performed to elucidate the effect of Ca2+ and Mg2+ on the SL- PAMPA 

permeation of tetracyclines. The details of molecular speciation analysis have been reported by Werner et 

al [39]. Tetracyclines and divalent metal ions can form a chelate with various stoichiometries (2:1, 1:1, 1:2), 

depending on the ionization state of tetracyclines and metal ion species [17,40–44]. In this analysis, macro 

pKa and major molecular species are considered [45,46]. The fraction of each molecular species (L0, L-1, L-2, 

M2+L-1, M2+L-2: L = tetracyclines, M = metal) (Figure 3) was calculated from the pKa values and the metal ion 
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association constants (KML = [L
z
M

2+
]/([M

2+
][L

z
], z = -1, -2) of tetracyclines (Tables 1 and 2) [17,39,47]. In the 

neutral pH region, tetracyclines mainly exist as an equilibrium between a charge–neutral form (L
0
), and 

negatively charged forms (L
-1

, L
-2

) (Figure 3) [31,40,47]. Even though L
0
 does not bind to the metal ions [47], 

Ca
2+

 and Mg
2+

 reduce the fraction of L
0
 (fL0) at pH 6.5 by shifting the equilibrium (Table 3). The reduction of 

fL0 corresponded to that of Pe, except for the Ca
2+

 effect on OXY permeability, suggesting that the SL-

PAMPA membrane is impermeable to M2+L-1. The pH - Pe relationship in our previous study [30] suggested 

that TC0, but not TC-1, predominantly permeates the SL-PAMPA membrane. However, further investigation 

is needed to better understand the effect of metal ions on tetracycline membrane permeation. The KML 

values reported in the literature show large variation [17,39,47]. The fL0 value is especially sensitive to the 

KML value of M
2+

L
-1

. In addition, M
2+

L
-1

 chelates may have different stoichiometry (1: 1 or 1: 2) [17,39,47]. 

Micro speciation with micro pKa values is required to decouple the contributions of uncharged and 

zwitterionic forms in L
0
 [45]. 
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Figure 3 Ionization states of tetracycline (TC) at the neutral pH region. The macro pKa value and major 

molecular species are shown in this figure. 

Table 2. Association constants of Ca
2+

 and Mg
2+

 with tetracyclines (L = TC, CTC, or OXY)  

Reactions 
log KML 

TC CTC OXY 

Ca2+ + L-1 ⇄  Ca2+L-1 3.4 
a
, 3.0 

b
 3.8 

c
,
 
2.9

 b
, 2.9

 b
 

Ca2+ + L-2 ⇄  Ca2+L-2 5.8 a, 4.0 b 5.9 c, 3.9 b,  3.8 b, 4.9 c 

Mg
2+

 + L
-1

 ⇄  Mg
2+

L
-1

 3.9 a, 3.5 b 3.3 c, 3.2 b 3.3 b 

Mg2+ + L-2 ⇄  Mg2+L-2 4.1 a, 4.2 b 4.7 c, 4.1 b 4.3 b, 5.2 c 
a
 Ref. [39] 

b
 Ref. [47] 

c
 Ref. [17] 

In OCT–PAMPA, Ca2+ increased the Pe values of TC, CTC, and DMCTC (Figure 3). This result is in good 

agreement with the previous studies investigating the Ca2+ effect on the alcohol – water partition 

coefficient of TC (octanol and isopentanol) [21–23]. Interestingly, Ca2+ affected SL–PAMPA and OCT–

PAMPA in the opposite direction for TC, CTC, and DMCTC, but in the same direction for DOXY, OTC, and 

MINO. On the other hand, Mg2+ decreased the Pe values of all tetracyclines in OCT–PAMPA except for CTC 

(no effect). These results suggest that it could be inappropriate to use octanol as a surrogate of a 

phospholipid membrane for investigating the effect of divalent metal ions. In OCT-PAMPA, the octanol 

phase could contain water molecules in reverse micelle structures [48]. This may facilitate the permeation 

of charged species, such as the TC – metal chelates. In similar to SL–PAMPA, the addition of mucin did not 

affect the Pe values in OCT–PAMPA, suggesting that there is no interaction between tetracyclines and 

mucin. As expected, there is a good correlation between log Doct and log Pe in OCT–PAMPA (Figure 4) 

[35,36]. 
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Table 3. Fraction of molecular species at pH 6.5 
a
 

Tetracyclines 

(L) 

Metal ions 

(M) 

Fraction of molecular species b Reduction % 

L
0
 L

-1
 L

-2
 M

2+
- L

-1 
 M

2+
- L

-2
 fL0 Pe 

TC None 0.95 0.05 < 0.01 -
c
 - - - 

 Ca
2+ d,e

 0.55 0.03 < 0.01 0.35 0.07 42 35 

 Mg2+ d,e 0.33 0.02 < 0.01 0.65 < 0.01 65 67 

CTC None 0.93 0.07 < 0.01 - - - - 

 Ca
2+ d,e

 0.24 0.02 < 0.01 0.61 0.12 74 64 

 Mg2+ d,e 0.53 0.04 < 0.01 0.42 0.02 43 56 

OXY None 0.91 0.09 < 0.01 - - - - 

 Ca
2+ d,e

 0.66 0.07 < 0.01 0.26 < 0.01 27 61 

 Mg2+ d,e 0.47 0.05 < 0.01 0.47 0.02 49 64 
a
 Activity coefficients were assumed to be 1. See ref. [39] for details; 

b
 L = TC, CTC, or OXY. M = Ca or Mg; 

c
 Not applicable;  

d
 5.0×10

-3
 mol/L; 

e
 The KML values were from Ref. [39], [17], [47] for TC, CTC, and OYX, respectively. 

 
 

 

Figure 4. Effect of additives on OCT–PAMPA permeation of tetracyclines (mean ± SD, n = 3 - 6). 
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Figure 5. Correlation between log Doct and log Pe of tetracyclines in OCT–PAMPA. The log Doct values were 
taken from the literatrue [30]. 

Clinically, co-administration of food and milk has been reported to decrease the bioavailability of 

tetracyclines (Table 4) [4–10]. The effect of food and milk on bioavailability is greater for TC and OXY, but 

relatively small for DOXY and MINO [4]. However, in the present study, the percent reduction of Pe by Ca
2+

 

was smallest for TC (MINO (87 %) > DMCTC (67 %) ≈ CTC (64 %) ≈ DOXY (62 %) ≈ OXY (61 %) > TC (35 %)). 

The Pe values of MINO and DOXY are higher than that of the other tetracyclines. In addition, after oral 

administration, MINO and DOXY are almost completely absorbed, whereas TC, OXY, CTC and DMCTC are 

incompletely absorbed [4]. Therefore, the reduction of Pe by Ca
2+

 may have less impact on the 

bioavailability of MINO and DOXY. Barza et al. reported that, after the administration of tetracyclines with 

milk into the ileal loop in dogs, the remaining fraction in the luminal contents is DOXY >> OXY ≈ MINO ≈ TC 

[49]. Lipophilicity may play a role in food and milk binding. The balance of metal ion chelating, food/ milk 

binding, and membrane permeation may determine the extent of food and milk effects. Interestingly, the 

effects of metal ions and pH [30] on the bioavailability of TC to E.coli are similar to that on SL-PAMPA 

permeation [50]. 

Table 4. Summary of food and milk effects on bioavailability of tetracyclines 

Drugs 
Percentage 

absorption, % a 

Bioavailability reduction, % b References for food 

and milk effect Food Milk 

CTC 25–30 45 c NA d [9] 

DMCTC 66 NA d 70 [6] 

DOXY 95 26 (3-49) 30 (9-53) [10] 

MINO 95-100 14 (2-51) 27 (8-61) [6,9,10] 

OXY 58 41 (4-77), 0 c, e 83 (45-96) [6,9,10] 

TC 77–88 46 (13-73%), 72 c 65 [5,8–10] 
a
 Ref. [4]; 

b
 In humans unless otherwise noted; 

c
 In pigs; 

d
 Data not available in the literature; 

e
 Low bioavailability (3 % in both fasted 

and fed pigs) 

We could not find any plausible chemical structural elucidation for the differences among tetracyclines 

regarding the effects of Ca2+ and Mg2+. Tetracyclines can easily modify their tautomerism in response to 

various chemical environments [44]. Metal binding to anionic phospholipids in the SL-PAMPA membrane 

may be another possible mechanism to reduce the permeation of tetracyclines. In our previous study, the 

addition of an anionic lipid neutralizer (tetrahexylammonium) did not affect the permeation of TC in SL-

PAMPA, suggesting that the ionic interaction with anionic phospholipids do not facilitate the permeation of 
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TC [30]. Further investigation is required to clarify the interactions among tetracyclines, metal ions, and 

phospholipids. We are currently investigating the effects of metal ions on the SL-PAMPA permeation of 

structurally diverse drugs. 

Conclusion 

In contrast to the previously suggested mechanism [21,22], in this study, Ca
2+

 chelate formation 

decreased the membrane permeation of tetracyclines, irrespective of Ca
2+

 linked mucin binding. Ca
2+

 

affected the Pe values in SL–PAMPA and OCT–PAMPA in the opposite direction for some tetracyclines. SL–

PAMPA can be a simple tool to qualitatively evaluate the effect of multivalent metal ions on the membrane 

permeation of drugs. 

Conflict of interest: The authors declare no conflict of interest. 
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