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Abstract

Background and purpose: Polyhydroxyalkanoates (PHAs) are biodegradable polyesters of bacterial origin
that are actively studied as matrices for the preparation of nanoparticulate drug delivery systems. The most
significant parameters affecting PHAs nanoparticles (NPs) characteristics are polymer composition and the
type of surfactant used to stabilize the emulsion during NPs preparation. However, there are only a few
studies in the literature investigating the effect of these factors on the characteristics of PHA NPs.
Experimental approach: Blank poly(3-hydroxybutyrate) (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxy-
valerate) (P3HBV) NPs were produced and characterized in terms of their size, morphology and zeta
potential. Poly(vinyl alcohol) (PVA) with various molecular weights (31-50 and 85-124 kDa), as well as Tween
20 (TW20), Tween 80 (TW80), sodium deoxycholate (SDC) and sodium dodecyl sulphate (SDS) were used as
surfactants. For NPs that formed stable aqueous suspensions and had the most desirable characteristics
(P3HB/PVAs1.50 and P3HBV/PVAs1.50), hemolytic activity and cytotoxicity to HeLa and C2C12 cells in vitro were
determined. Key results: NPs of both P3HB and P3HBV obtained using PVA with the M\ of 31-50 kDa as a
surfactant had regular spherical shape, uniform size distribution, average diameter of about 900 nm and
zeta potential of -28.5 and -28.7 mV, respectively. PVAss-124, TW20 and TW80, as well as SDC and SDS as
surfactants, did not show satisfactory results due to suspension gelation, formation of hollow NPs with
irregular shape and poor resuspension after washing and freeze-drying, respectively. P3HB/PVAsz1.50 and
P3HBV/PVAz1-50 NPs did not have hemolytic activity and did not show pronounced cytotoxicity to HelLa and
C2C12 cells in the concentration range from 10 to 500 pg mL?, so these samples were regarded as safe and
biocompatible. Conclusion: In this study, the effect of various non-ionic and anionic surfactants on the
characteristics of P3HB and P3HBV NPs was investigated. PVAs1so was found to be effective in producing
NPs of both studied polymers with good biocompatibility and favorable characteristics, making them
suitable for drug delivery applications. In contrast, other studied surfactants, i.e., PVAss.124, TW20, TW80,
SDC and SDS, require further investigation. The obtained findings may promote the development of novel
PHA-based nanomedicines.

©2025 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license (http.//creativecommons.org/licenses/by/4.0/).
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Introduction

In recent years, there has been increasing interest in utilising biodegradable polymeric nanoparticles (NPs)
to combat a plethora of diseases, such as cancer and bacterial infections. This nanoplatform represents a
powerful tool in the field of medicine as it’s been found to successfully deliver antineoplastic drugs to target
cells [1-4], suppress tumour growth in tumour-bearing animals in vivo [5-7] and overcome cancer drug
resistance [8]. Thus, investigation of novel biodegradable polymeric nanovehicles has become an important
facet of modern drug development.

Polyhydroxyalkanoates (PHAs) are a family of hydrophobic biodegradable polyesters of bacterial origin.
These polymers gain much attention as a matrix for the preparation of various nanodrug formulations as they
demonstrate excellent biocompatibility, biodegradability and controllable thermal and mechanical proper-
ties [9]. PHAs matrices were successfully used to encapsulate cytostatic [10-15] and antibacterial [16-18]
drugs, anti-inflammatory agents of steroid and non-steroid nature [19], photosensitizers [20], antisense
oligonucleotides [21], inclusion complexes [22], insulin [23,24], plant-derived essential oils [25], etc. How-
ever, despite intensive research in this area, the amount of experimental data on the influence of synthesis
parameters and polymer composition on the characteristics of PHAs NPs is extremely limited.

At present, the emulsification solvent evaporation technique is one of the most widely employed methods
for the preparation of PHAs NPs. In this method, surfactant plays an important role as it stabilizes the
emulsion by decreasing the surface tension and primarily affects the NPs characteristics. A variety of
compounds have been proposed for this purpose, including ionic and non-ionic. Among them, poly(vinyl
alcohol) (PVA) is one of the most common non-ionic surfactants, since it’s nontoxic, biodegradable [27] and
has a capacity to form relatively small particles with uniform size distribution [28]. For instance, PVA was
found suitable to be utilized to obtain PHAs [29-31], poly(caprolactone) [32-34], and poly(lactic-co-glycolic
acid) (PLGA) and its block copolymer with poly(ethylene glycol) (PEG) [35-37] particles of different sizes.

Another group of non-ionic surfactants are polysorbates, commercially available under the trade name
Tween. Chemically, polysorbates are polyoxyethylated sorbitan esters that differ in the fatty acid residue.
Polysorbates are widely used in the food, cosmetic, and pharmaceutical industries as they possess low
toxicity and biodegradability. Furthermore, they are applied to stabilize polymeric NPs, since they show high
surface activity, prevent protein adsorption and enhance NPs' ability to traverse biological barriers [28].

The cytotoxicity of surfactants varies depending on the chemical structure, but it generally decreases in
the order: cationic surfactants > anionic surfactants > zwitterionic surfactants > non-ionic surfactants [38].
Thus, among the many surfactants available, anionic compounds such as sodium dodecyl sulfate (SDS) and
sodium deoxycholate (SDC) have found only limited application for NPs preparation due to safety concerns.
It has been reported that SDS may cause irritation and a decrease in cell proliferation [39], so rigorous
removal of the excessive surfactant from the resulting NPs is highly important. This effect may be a significant
limitation for some systemic routes of administration, such as intravenous injection, where exposure to
sensitive tissues and cells is unavoidable. However, the Food and Drug Administration (FDA) regards SDS as
safe as an additive in the food industry [40], so oral administration of properly purified SDS-coated NPs may
be considered acceptable [41]. According to literature, SDS was used to obtain PLGA particles of different
sizes loaded with a-tocopherol [42], amoxicillin [43] and paclitaxel [44]. SDC also has a noticeable dose-
dependent cytotoxic potential, but nanoparticulate drug delivery systems leveraging its ability to increase
lipid membrane permeability and disrupt tight junctions in the epithelial lining may be suitable for mucosal
and oral administration of bioactive compounds [45,46]. In addition, some studies revealed that anionic
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surfactants alone or in mixtures with other surfactants can be used to obtain NPs that possess the mean
diameter much smaller than that of the NPs obtained using PVA [42,44].

Cationic surfactants have also not found wide application for the preparation of polymeric NPs due to
their intrinsic membrane-disruptive activity. This effect is caused by the electrostatic interaction between the
cationic nanoparticle surface and the negatively charged lipid membrane of cells. For instance, Hwang et al.
[47] reported that common cationic surfactants cetyltrimethylammonium bromide (CTAB) and soyaethyl
morpholinium ethosulfate (SME) in both nanoparticulate and free forms decrease cell viability of human
neutrophils, induce membrane damage and the release of inflammatory mediators. Inacio et al. [48] also
studied the cytotoxicity of cationic surfactants to mammalian cells and revealed that quaternary ammonium
compounds induce not only membrane disruption but also mitochondrial dysfunction in MDCK Il epithelial
cells. The addition of non-ionic compounds such as PEG and PVA during NPs preparation may reduce cationic
NPs’ cytotoxicity [49], but this approach has not been sufficiently studied.

Although several authors investigated the effect of preparation parameters on the size and stability of
PHAs particles [50-52], to the best of our knowledge, a comprehensive study on the influence of various
surfactants on the characteristics of PHAs NPs has not been reported.

The aim of this research is to investigate the influence of various non-ionic and anionic surfactants and
polymer composition on the characteristics of PHAs nanoparticles.

Experimental

Materials

Microbial poly(3-hydroxybutyrate) (P3HB, 363 kDa) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(P3HBV, 10.2 % of 3HV, 475 kDa) were produced at the laboratory of Biotechnology of New Biomaterials of
Siberian Federal University in Krasnoyarsk, RF [53,54]. PVA (31-50 kDa, degree of hydrolysis 98-99 % and 85-
124 kDa, degree of hydrolysis 99 %), dimethyl sulfoxide (DMSO) and standard antibiotic-antimycotic
supplement were purchased from Sigma-Aldrich (USA). Tween 20 (TW20) was purchased from Panreac
Applichem (Germany). Tween 80 (TW80) was purchased from Amresco (USA). SDC was purchased from Acros
Organics (USA). SDS was purchased from Helicon (Russia). Dulbecco’s modified Eagle’s medium (DMEM) was
purchased from Thermo Fisher Scientific (USA). Fetal bovine serum was purchased from HyClone (USA).

All reagents and solvents were of analytical grade and used as received without further purification. The
water used was purified by Arium® Pro Ultrapure water system (Sartorius AG, Germany).

Preparation of nanoparticles

P3HB and P3HBV nanoparticles were prepared using the single emulsion solvent evaporation technique
[18,55]. In brief, 0.2 g of P3HB or P3HBV was dissolved in 20 mL of CHCIl; at 50 °C. The resulting solution was
added dropwise to 100 mL of surfactant solution (0.5 %) in deionized water and mechanically stirred at
24000 rpm for 5 min (Heidolph SilentCrusher M, Germany). Then, the resulting emulsion was magnetically
stirred at 1000 rpm for 24 h until the complete CHCI; evaporation. The obtained nanoparticles were collected
by centrifugation, washed 5 times with deionized water and freeze-dried.

Yield of nanoparticles

Yield of the obtained nanoparticles (Y) was determined according to Equation (1) [56,57]:

M
y=—2™ms 100 (1)

polymer

doi: https://doi.org/10.5599/admet.2723 3



https://doi.org/10.5599/admet.2723

A. Dorokhin et al. ADMET & DMPK 13(3) (2025) 2723
where Mnps is @ mass of the obtained NPs and Mpoymer is @ mass of the polymer used.

Hydrodynamic particle size and zeta potential

The average hydrodynamic size and polydispersity index (PDI) of the obtained nanoparticles were
determined by dynamic light scattering (DLS), while zeta potential was measured by electrophoretic light
scattering (ELS) (Zetasizer Nano ZS, Malvern, UK) according to standard procedures described in [58-61].
Aqueous suspensions of each sample containing 2 mg of nanoparticles in 2 mL of deionized water were
sonicated at 30 W for 1 min before the measurements (Misonix Sonicator S3000, USA). ZetaSizer Nano ZS
software was used to analyze the results.

Scanning electron microscopy

In order to assess the shape and surface morphology of the obtained nanoparticles, scanning electron
microscopy (SEM) was used (Hitachi SU3500 and Hitachi TM4000, Japan). The samples were positioned on a
specimen stub and sputter-coated with platinum (Leica EM ACE200, Germany) to increase conductivity and
promote heat dissipation from the polymeric matrix.

Determination of residual PVA

The amount of residual PVA associated with P3HB and P3HBV NPs obtained using PVA31.50 and PVAss 124
was determined spectrophotometrically by the method based on the formation of a blue-coloured complex
between PVA and triiodide in the presence of boric acid described in [62,63]. In brief, 2 mg of freeze-dried
NPs samples were treated with 2 mL of 0.5 M NaOH for 15 min at 60 °C. Then, 0.9 mL of 1 M HCl was added
to each sample, and the volume was adjusted to 5 mL with deionized water. To each sample, 3 mL of a 0.65
M solution of B(OH);, 0.5 mL of a solution of I5/KI (0.05 M/0.15 M), and 1.5 mL of deionized water were
added. After incubation for 15 min, the optical density of the samples was measured at 690 nm. Calibration
curves of PVA3;.5s0 and PVAgs.124 Were prepared under the same conditions.

The amount of residual PVA, wt.% was calculated according to Equation (2) [63]:

Residual PVA — Mown 100 (2)

NPs

where Mpya is @a mass of PVA associated with NPs and Myps is @ mass of the obtained NPs.

Hemolytic activity

The hemolytic activity of P3HB/PVAs1.50 and P3HBV/PVA;1.50 was evaluated since NPs in these samples
were aggregately stable in aqueous solutions. The determination of hemolytic activity was carried out in
accordance with the procedure described in [64] with some modifications. In brief, the whole human blood
containing EDTA as an anticoagulant was centrifuged at 3000 rpm for 10 min. Plasma and buffy coat were
discarded, while red blood cells (RBCs) precipitate was collected, washed with normal saline and resuspended
in normal saline to a concentration of 108 cells mL. Then, 20 pL of P3HB/PVA31.50 or P3HBV/PVA3;.50 colloidal
solutions with various concentrations (to obtain the concentration of 10, 50, 100 and 500 pg mL? in wells)
were added to 130 pl of the obtained RBCs suspension in a 96-well plate and incubated at 37 °C for 2 h. After
incubation, RBCs were separated by centrifugation and the absorbance of haemoglobin in the supernatant
at 415 nm was determined using an iMark Microplate Reader (Bio-Rad Laboratories, USA). RBCs in the
positive control were treated with deionized water, which caused the complete osmotic lysis of the RBCs'
membranes, while RBCs in the negative control were incubated with normal saline.

Hemolytic activity of P3HB/PVAs;1.s0 and P3HBV/PVAs1.50 was calculated according to the formula [64]:

4 (cc) IR
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A _-A
Hemolysis = —et—"c 100 (3)
A -A

pc “'nc

where At is the absorbance of samples incubated with NPs, Ay is the absorbance of the positive control
sample (RBCs incubated with deionized water) and An. is the absorbance of the negative control sample (RBCs
incubated with normal saline).

Cell culture

Hela cervical cancer cells and C2C12 myoblast-like cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Thermo Fisher Scientific, USA) supplemented with 10 % fetal bovine serum and 1 %
penicillin-streptomycin. The cells were maintained at 37 °C in a 5 % CO, humidified atmosphere and
subcultured using 0.25 % trypsin-EDTA after reaching 70-80 % confluence.

Cytotoxicity assessment

Hela and C2C12 cells were planted at a density of 2x10* cells per 1 cm? in 96-well plates. After seeding
and 24 h of incubation, the medium was replaced by fresh culture medium containing suspensions of
P3HB/PVAs1.50 or P3HBV/PVA31.50 with various concentrations (to obtain the concentrations of 10, 50, 100
and 500 pg mL? in wells) and the cells were incubated with NPs for 72 h. Then, the cell viability was
determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as described
elsewhere [65,66]. The absorbance of the resulting formazan dissolved in DMSO was recorded using an iMark
Microplate Reader (Bio-Rad Laboratories, USA) after 4 h of incubation with 200 pL of MTT solution at 37 °C
(A =550 nm). Cell viability was calculated relative to untreated cells according to the formula [67]:

A
Cell viability = —=-100 (4)
control
where Aiest is the absorbance of samples incubated with NPs and Acontrol is the absorbance of the control
sample.

To visualize live and dead cells, a LIVE/DEAD assay was performed using a ReadyProbes™ double staining
kit (Thermo Fisher, USA) in accordance with the manufacturer’s protocol. Images were obtained using
DM6000 B TL (BF) + Fluo «Leica» digital microscope (Leica Microsystems GmbH, Germany). Live and dead
cells had blue and green fluorescence, respectively.

To estimate the cell monolayer surface area covered with NPs, an Eclipse Ti-U inverted microscope was
used (Nicon, Japan). Cell images were analysed using Fiji open-source image processing software [68].

Results and discussion

NPs characteristics

To determine the average diameter and zeta potential of the obtained NPs, DLS and ELS methods were
used, respectively. However, NPs of both polymers used, obtained using PVAgs.124, TW20 and TW80, as well
as SDC and SDS, were not suitable for DLS and ELS measurements due to solution gelation, NPs aggregation
and poor resuspension after washing and freeze-drying, respectively. The characteristics of the NPs obtained
are presented in Table 1.

P3HB and P3HBV NPs obtained using PVAs1.50 and PVAss.124 had a smooth surface, regular spherical shape
and the mean diameter of approximately 900 nm (Figure 1). However, P3HB/PVAgs.124 and P3HBV/PVAgs.124
NPs were prone to gel formation due to high residual surfactant content even after multiple washings with
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deionized water. At high NPs concentrations, complete gelation of the solution was observed, while diluted
NPs suspension underwent local gelatinization, leading to NPs aggregation. According to the literature, PVA
molecules cannot be removed entirely during the washing procedures due to the formation of an
interconnected network with the polymer [63] and therefore remain associated with the surface of polymeric
nanoparticles [69]. During NPs formation, the residual hydrophobic vinyl acetate groups of a partially
hydrolyzed PVA serve as an anchoring site on the hydrophobic polymer surface, while more hydrophilic fully
hydrolyzed segments are exposed to the aqueous phase [70]. As PVAss.124 used in this research has a high
degree of hydrolysis, the formation of the gelled network between NPs via strong hydrogen bonds between
hydroxyl groups of PVA molecules occurred [71], making it impossible to measure NPs size and zeta potential
via DLS and ELS methods, respectively.

Table 1. Characteristics of P3HB and P3HBV NPs obtained using various surfactants.

Sample Y/ % d/nm Pdl Zeta potential, mV
P3HB/PVA31-50 94.1 910.6 0.264 -28.5
P3HB/PVAss.124  102.3 Solution gelation, NPs aggregation, high residual surfactant content
P3HB/TW20 87.5 Formation of porous NPs with an irregular shape and hollow polymeric “shells” tending
P3HB/TWS80 92.6 to aggregate and precipitate
iz:gﬁgg 45123 Poor resuspension after washing and freeze-drying
P3HBV/PVAs1s0  98.2 919.0 0.219 -28.7
P3HBV/PVAss124 101.7 Solution gelation, NPs aggregation, high residual surfactant content
P3HBV/TW20 81.0 Formation of porous NPs with an irregular shape and hollow polymeric “shells” tending
P3HBV/TWS80 85.9 to aggregate and precipitate

P3HBV/SDC 79.4
P3HBV/SDS 53.5

Poor resuspension after washing and freeze-drying

Residual PVA influences the physical and chemical properties of NPs' surface, such as zeta potential and
hydrophobicity and can modulate cellular uptake. The amount of PVA associated with P3HB/PVA3;so,
P3HBV/PVA31.50, P3HB/PVAgs.124 and P3HBV/PVAss.124 NPs increased with the increase of its molecular weight
(Table 2). These results are in accordance with those obtained by Azizi et al. [72]. They reported that PVA
with a high molecular weight (146-186 kDa) covered bovine serum albumin-loaded PLGA NPs more than PVA
with the M\, of 13-23 and 70-87 kDa.

P3HB/PVAs1.50 and P3HBV/PVAs1.50 NPs had zeta potential values of -28.5 and -28.7 mV, respectively, so
colloidal solutions of these samples were regarded as stable [61]. Moreover, residual PVA on the NPs surface
is beneficial as it provides the additional steric stabilization of the NPs [73].

Samples prepared using both Tween 20 and Tween 80 contained porous NPs with an irregular shape and
hollow polymeric “shells” tending to aggregate and precipitate (Figure 1). Similar surface morphology was
shown by different authors for curcumin-loaded P3HB NPs prepared using 0.1 % aqueous solution of
Tween 80 [74], as well as blank P3HB NPs obtained using 0.1 % aqueous solution of Span 20 [52]. Formation of
such particles may be attributed to water occlusion during CHCl; evaporation or double emulsion formation.
Tween 80 has a hydrophilic-lipophilic balance (HLB) of 15.0 and promotes the formation of O/W emulsions [75].
However, it has been shown that TW80 can facilitate the formation of W/O emulsions in the mixture with
Span 80 (HLB 4.3), even though the HLB value of this mixture is not as low as that for pure Span 80 [76].

NPs obtained using both SDC and SDS were prone to poor resuspension after washing and freeze-drying,
even after the addition of another surfactant (Tween 80 or PVA) solution in the NPs suspension and extended
sonication. According to SEM, P3HB/SDC, P3HBV/SDC, P3HB/SDS and P3HBV/SDS NPs had spherical shape
and the average diameter was less than 500 nm (Figure 1). Similar reduction in particle size compared to
particles prepared using PVA as a surfactant was observed by Esim et al. [77].
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Figure 1. SEM imags of the obtained Ps. (A) P3B/PVA31-so. (B) P3HBV/PVAs1.50. (C) P3HB/PVAss 124. ()
P3HBV/PVAss.124. (E) P3HB/TW20. (F) P3HBV/TW20. (G) P3HB/TWS80. (H) P3HBV/TWSO. (1) P3HB/SDC. (J) P3HBV/SDC.
(K) P3HB/SDS. (L) P3HBV/SDS

Table 2. Residual PVA associated with P3HB and P3HBV NPs.

Sample Residual PVA, % (w/w)
P3HB/PVA31-50 1.5+0.5
P3HB/PVAsgs-124 7.0+0.6
P3HBV/PVAsz1-50 1.7+0.4

P3HBV/PVAss-124 7.5£0.9

These particles formed large aggregates, and only a few individual particles were detected. Such a
tendency to agglomerate was shown for PLGA microspheres obtained using anionic surfactant dioctyl sodium
sulfosuccinate [43], some samples of zein NPs obtained using SDC [78], as well as PLGA-PEG NPs obtained
using sodium cholate that differs from SDC by only the 7a-hydroxyl group [79]. We assume that this may be
due to the fact that low-molecular anionic surfactants, unlike PVA, do not provide a sufficient steric
stabilization of nanoparticles. Thus, during the washing procedures, the SDC and SDS molecules are removed
from the NPs surface, which leads to a decrease in the electrostatic repulsion and aggregation and
precipitation of the NPs. In addition, the yield of nanoparticles obtained using anionic surfactants was
unsatisfactory for both polymers used, which may also be due to strong aggregation of particles during the
washing stage. To increase the NPs’ yield, a mixture of anionic and non-ionic surfactants may be used. This
approach exploits not only the steric stabilization of NPs by PVA moieties but also the capacity of anionic
surfactants to produce NPs of small sizes [44].

In this work, no tangible influence of the 3-hydroxyvalerate content on the characteristics of the nano-
particles was revealed.

Hemolytic activity

To estimate the hemocompatibility of the NPs that form stable colloidal solutions and possess the most
desirable morphology (P3HB/PVAs1.s0 and P3HBV/PVAs1.50), the hemolytic activity of these samples at various
concentrations (10, 50, 100 and 500 pug mL) was determined. According to literature, NPs with less than 5%
hemolytic activity are considered safe and hemocompatible [80,81]. As shown in Figure 2, the percentage of
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hemolysis induced by both P3HB/PVA;1.50 and P3HBV/PVA;1.50 was less than 2 % at all concentrations used.
So, according to this criterion, NPs in the samples P3HB/PVA31.50 and P3HBV/PVA3;.50 do not show membrane-
disrupting activity. These results are in accordance with those obtained by Chen et al. [82]. They reported
that P3HB-PEG-P3HB NPs have negligible hemolytic activity even at a concentration of 120 ug mL™.

1.25 1.25
1.00 1.00
0T = oS
g g
5 S
E 050 E 050
I xr
0.25 0.25
0.00 0.00
10 50 100 500 10 50 100 500
A C/pgmL? B C/ugmL?

Figure 2. Hemolytic activity of P3HB/PVAz1.50 (A) and P3HBV/PVAs1-50 (B) at different NPs concentrations

Due to solution gelation, NPs aggregation and poor resuspension, NPs obtained using PVAsgs.124, TW20,
TW80, SDC and SDS were unsuitable for the in vitro experiments, since NPs in these samples did not form
stable colloidal solutions.

In vitro cytotoxicity

In this study, cytotoxicity of P3HB/PVA31.s0 and P3HBV/PVA31.50 NPs to Hela cervical cancer cells and C2C12
myoblast-like cells was evaluated. As shown in Figure 3, at the concentrations of 10, 50 and 100 pg mL?, NPs
of both studied samples did not influence Hela cell viability. However, at the relatively high concentration of
500 pg mL?, a slight increase in the amount of dead cells was observed, as NPs covered more than 90 % of
the cell monolayer, impairing transport of nutrients to cells and hindering cell proliferation (Figure 4). At the
same time, C2C12 cells were less sensitive to NPs exposure, and no significant decrease in cell viability was
observed at any NPs concentration. NPs predominantly accumulated in the area of cell junctions, which may
be caused by the complex of adhesion, bending and protrusion of at least two cell membranes interacting
with NPs and trapping them in this area [83].

120 120
100 | 100
SR o mh A Ll
R 80 ® 80
z z
-'.‘; 60 _cgg 60
Z =
8 40 8 40
20 20
0 0
A 10 50 100 500 B 10 50 100 500

C/pgmL? C/pgmL?
Figure 3. Viability of Hela (black) and C2C12 (blue) cells treated with P3HB/PVAsz1.50 (A) and P3HBV/PVAs1.50(B) at
different NPs concentrations
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Figure 4. Images of Hela (A, B) and C2C12 (C, D) cells treated with P3HB/PVAs1-50 NPs at different concentrations
obtained using fluorescent and optical microscope. Live and dead cells had blue and green fluorescence, respectively.
At the concentrations of 10, 50, 100 and 500 pg mL™* P3HB/PVAs1-s0 NPs covered 8, 21, 55 and more than 90 % of cell
monolayer, respectively. Data for P3HBV/PVAs1.50 are not presented

Biodegradable polymeric nanoparticles, in general, are considered safe and biocompatible and show
cytotoxic effects only at relatively high concentrations. Hu et al. [84] reported that poly(3-hydroxybutyrate-
co-3-hydroxyvalerate-co-3-hydroxyhexanoate) NPs did not affect the cell viability of Jurkat (human T
lymphocytes) and Raji (human B lymphoblastoid) cells even at the concentration of 5 mg mL™. Similar results
were obtained by Masood et al. [12]. P3HBV NPs showed only £22.49 % A549 (pulmonary epithelium) cancer
cell inhibition at 250 pg mL? concentration after 72 h of incubation. Silva et al. [85] reported that PLGA NPs
are slightly cytotoxic to Y-79 human retinoblastoma cells only at the NPs concentration of 32 umol L. Cell
viability was decreased to 85-90 % of the control, so the studied NPs were regarded as safe for drug delivery
applications. Xiong et al. [86] also investigated PLGA NPs cytotoxicity and reported that these nanoparticles
showed no cytotoxic effects to RAW264.7 (murine macrophage) and BEAS-2B (human bronchial epithelial)
cells at the NPs concentrations ranging from 10 to 300 pg mL?, while TiO, NPs at the concentration of 300 ug
mL? significantly decreased BEAS-2B cell viability.

Conclusions

In this study, the effect of various non-ionic and anionic surfactants on the characteristics of P3HB and
P3HBV NPs was investigated. NPs obtained using PVA with M,, of 31-50 kDa revealed a smooth surface,
regular spherical shape, a size of about 900 nm, appropriate zeta potential, negligible hemolytic activity and
low cytotoxicity to HeLa and C2C12 cells. Thus, PHAs NPs obtained using PVAsi1.50 are a promising carrier for
the preparation of various nanodrug formulations. However, NPs prepared using PVAgs.124 tended to undergo
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hydrogel formation due to high residual surfactant content even after multiple washings with deionized
water. TW20 and TW8O0 also showed unsatisfactory results as surfactants owing to the formation of hollow
polymeric “shells” tending to aggregate and precipitate in aqueous solutions. Nevertheless, such hollow
particles, while unsuitable for creating drug delivery systems, may serve as a promising candidate for tissue
engineering purposes. NPs obtained using anionic surfactants SDC and SDS were significantly smaller, but
further studies are required to ensure their aggregation stability.
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