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Abstract

Background and purpose: Many new compounds are being prepared to overcome the problem of increasing
microbial resistance and the increasing number of infections. Experimental approach: This study includes a
series of twenty-seven mono-, di- and trisubstituted 2-hydroxynaphthalene-1-carboxanilides designed as
multitarget agents. The compounds are substituted with methoxy, methyl, and nitro groups, as well as
additionally with chlorine, bromine, and trifluoromethyl at various positions. All the compounds were
evaluated for antibacterial activities against Gram-positive and Gram-negative bacteria and mycobacteria.
Cytotoxicity on human cells was also tested. Key results: Three compounds showed activity comparable to
clinically used drugs. N-(3,5-Dimethylphenyl)-2-hydroxynaphthalene-1-carboxamide (13) showed only antista-
phylococcal activity (minimum inhibitory concentration (MIC) = 54.9 uM); 2-hydroxy-N-[2-methyl-5-(trifluoro-
methyl)phenyllnaphthalene-1-carboxamide (22) and 2-hydroxy-N-[4-nitro-3-(trifluoromethyl)phenyl]lnaphtha-
lene-1-carboxamide (27) were active across the entire spectrum of tested bacteria/mycobacteria, both against
the sensitive set and against resistant isolates (MICs range 0.3 to 92.6 uM). Compound 22 was even active against
E. coli (MIC = 23.2 uM). The active agents showed no in vitro cytotoxicity up to a concentration of 30 uM.
Conclusion: Compounds with trifluoromethyl in the meta-anilide position, experimental lipophilicity expressed
as log k (logarithm of the capacity factor) in the range of 0.31 to 0.34 and calculated electron o parameter for the
anilide substituent higher than 0.59 were effective. The investigated compounds meet the definition of Michael
acceptors. Based on ADME screening, the investigated compounds 13, 22 and 27 should have suitable
physicochemical parameters for good bioavailability in the organism. Therefore, these are promising agents for
further study.

©2025 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license (http.//creativecommons.org/licenses/by/4.0/).
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Introduction

An increasingly common problem is the increasing number of infections caused by a wide range of microor-
ganisms. The increase in antimicrobial resistance across the spectrum of bacteria plays a major role [1-3]. The
most effective tool to counter this unfortunate trend is the effort to discover new bioactive compounds or at
least innovated structures of existing drugs with a new/innovative mechanism of action [4-7]. In addition to the
development of the most valuable molecules — structurally novel anti-infectives targeting new (single or
multiple) targets [8,9], interesting strategies include the development of lantibiotics and bacteriocins [10,11],
antimicrobial peptides and bacterial cell membrane disruptors [12-15], chemosensitizers, inhibitors of quorum
sensing, virulence and biofilm formation, phage or monoclonal antibody-based therapies [16-18], drug
repurposing [19,20], or nanoparticle-based strategies [21,22].

As mentioned, the current trend remains the design of so-called multitarget compounds, which are able to act
on many different targets and thus interfere with the bacterial microorganism at different points of metabolism
or reproduction [18,23-27]. Salicylanilides represent a promising type of multitarget compounds [28-36]. Inspired
by salicylanilides, deeper research into their cyclic analogues — hydroxynaphthalenecarboxanilides — was
initiated. These compounds are characterized not only by antimicrobial [37] but also by antiparasitic [38] and
anticancer [39] activity. In these compounds, the essential role of the hydroxyl group has been identified, which
must be free [40,41] or substituted by a group (e.g. carbamate [42]) capable of forming bonds with
biomolecules. The connecting amide bridge between aromatic systems is also an important part. The position
of the phenyl group is important because it manifests various physicochemical (e.g. solubility and lipophilicity),
but also biological properties [37-39,43-45]. Overall, it can be said that the mentioned molecules can be
considered as Michael acceptors [46-51].

Many anilides have been prepared, especially with pronounced lipophilic and electron-withdrawing
(F/CI/Br, CF3) substituents, which were expected to be antimicrobially active, i.e. the molecules would
approach the properties of Michael acceptors [37,38,40,41,43-45]. Only a few works have dealt with alkoxy
or methyl substituents [52-54]. Thus, it is a follow-up work of previous research, where anilides containing
various combinations of predominantly polar and electron-donating/less electron-accepting substituents on
the 2-hydroxynaphthalene-1-carboxanilide scaffold have now been synthesized and all the prepared
compounds have been investigated on a wide battery of bacterial and mycobacterial species.

Experimental

General

All reagents were purchased from Merck (Sigma-Aldrich, St. Louis, MO, USA) and Alfa (Alfa-Aesar, Ward
Hill, MA, USA). Microwave-assisted reactions were performed using a StartSYNTH microwave lab station
(Milestone, Sorisole BG, ltaly). The melting points were determined on a Kofler hot-plate apparatus HMK
(Franz Kustner Nacht KG, Dresden, Germany) and were uncorrected. Infrared (IR) spectra were recorded on
an ATR diamond iD7 for Nicolet™ Impact 410 Fourier-transform IR spectrometer (Thermo Scientific, West
Palm Beach, FL, USA). The spectra were obtained by accumulating 64 scans with a 2 cm™ resolution in the
region of 4000-650 cm™. All H- and 3C-NMR spectra were recorded on a JEOL ECZR 400 MHz NMR
spectrometer (400 MHz for *H and 100 MHz for 3C, Jeol, Tokyo, Japan) in dimethyl sulfoxide-ds (DMSO-d).
'H and 3C chemical shifts (6) are reported in ppm. High-resolution mass spectra were measured using a high-
performance liquid chromatograph Dionex UltiMate® 3000 (Thermo Scientific, West Palm Beach, FL, USA)
coupled with an LTQ Orbitrap XL™ Hybrid lon Trap-Orbitrap Fourier Transform Mass Spectrometer (Thermo
Scientific) equipped with a HESI Il (heated electrospray ionization) source in the positive mode.
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General procedure for synthesis of N-(substituted phenyl)-2-hydroxynaphthalene-1-carboxamides 1-27.

2-Hydroxynaphthalene-1-carboxylic acid (5.3 mmol) and the corresponding substituted aniline (5.3 mmol)
were suspended in 30 mL of dry chlorobenzene. Phosphorous trichloride (2.65 mmol) was added dropwise,
and the reacting mixture was heated in the microwave reactor for 15 min at 130 °C and maximal allowed
power 500 W using infrared flask-surface control of temperature. The solvent was evaporated under reduced
pressure, the solid residue was washed with 2 M HCI, and the crude product was recrystallized from aqueous
ethanol. All the studied compounds are presented in Table 1.

Table 1. Structure of ring-substituted 2-hydroxynaphthalene-1-carboxanilides 1-27; experimentally determined
logarithm of the capacity factor (log k), logarithm of distribution coefficients at pH 6.5 (log Dss) and pH 7.4 (log D7.4),
predicted lipophilicity (log P) values and electronic a(ar) parameters of anilide ring of investigated compounds

o] &
\I_R
L
H
OH

Comp. R log k log Dg s log D74 log P! oAyt
1 H 0.0340 0.0011 0.0107 4.49 0.60
2 2-OCH3 0.3181 0.3015 0.3069 4,54 0.01
3 3-OCH3 0.1751 0.1643 0.1717 4,51 0.66
4 4-0OCH; -0.0380 -0.0491 -0.0382 4.30 0.36
5 2,5-0CH3 0.3353 0.3263 0.3310 4.70 0.08
6 3,5-OCH3; 0.0388 0.0411 0.0490 4.28 0.93
7 3,4,5-OCH3 -0.1150 -0.1053 -0.0948 4.22 0.69
8 2-CH3 0.0858 0.0745 0.0838 4.83 0.59
9 3-CHs 0.1762 0.1644 0.1727 4.83 0.48
10 4-CHs 0.1658 0.1553 0.1632 4.83 0.46
11 2,5-CH3 0.2486 0.2455 0.2514 4.99 0.59
12 2,6-CH3 0.0785 0.0838 0.0923 4.99 0.58
13 3,5-CH3 0.3367 0.3429 0.3480 4.99 0.59
14 2,4,6-CH3 0.2539 0.2629 0.2691 4.84 0.44
15 2-OCH3-5-CH3 0.4932 0.4974 0.5012 4.77 0.01
16 2-OCH3-6-CH3 0.0124 0.0284 0.0382 4.77 0.01
17 2-CH3-5-OCH3 0.0892 0.1047 0.1113 4.95 0.76
18 2-Cl-5-OCH3 0.4635 0.4607 0.4593 5.15 1.13
19 2-OCH3-5-Br 0.5845 0.5836 0.5835 5.58 0.12
20 2-OCH3-5-CF3 0.5335 0.5323 0.5305 5.77 0.11
21 3-CF3-4-OCHs 0.1635 0.1704 0.1745 5.64 0.58
22 2-CH3-5-CF3 0.3373 0.3444 0.3440 5.71 0.82
23 3-CF3-4-CH3 0.4605 0.4621 0.4636 5.71 0.68
24 2-NO, 0.3033 0.3077 0.3103 4.45 1.12
25 3-NO; 0.4882 0.3462 0.3058 4.50 1.09
26 4-NO, 0.0984 0.0862 0.0879 4.59 1.14
27 3-CF3-4-NO; 0.3124 0.3282 0.3220 5.47 1.36

1calculated using ACD/Percepta ver. 2012 (Advanced Chemistry Development, Inc., Toronto, ON, Canada, 2012) [55].

2-Hydroxy-N-phenylnaphthalene-1-carboxamide (1), 2-hydroxy-N-(2-methoxyphenyl)naphthalene-1-carbox-
amide (2), 2-hydroxy-N-(3-methoxyphenyl)naphthalene-1-carboxamide (3), 2-hydroxy-N-(4-methoxyphenyl)na-
phthalene-1-carboxamide (4), 2-hydroxy-N-(2-methylphenyl)naphthalene-1-carboxamide (8), 2-hydroxy-N-(3-
-methylphenyl)naphthalene-1-carboxamide (9), 2-hydroxy-N-(4-methylphenyl)naphthalene-1-carboxamide (10),
2-hydroxy-N-(2-nitrophenyl)naphthalene-1-carboxamide (24), 2-hydroxy-N-(3-nitrophenyl)naphthalene-1-carb-
oxamide (25), 2-hydroxy-N-(4-nitrophenyl)naphthalene-1-carboxamide (26) were described by Gonec et al. [43].

N-(2,5-Dimethoxyphenyl)-2-hydroxynaphthalene-1-carboxamide (5)

Yield 77 %; mp 196-198 °C; IR (em™): 2934, 2829, 1625, 1583, 1531, 1513, 1486, 1463, 1434, 1423, 1353,
1278, 1265, 1239, 1219, 1175, 1148, 1033, 970, 959, 895, 847, 815, 792, 741, 717, 702; *H-NMR (DMSO-ds),
6:10.50 (br. s, 1H), 9.32 (s, 1H), 8.06 (d, 1H, J=2.7 Hz), 8.02 (d, 1H, J=8.7 Hz), 7.88 (d, 1H, J=9.1 Hz), 7.84 (d,
1H, J=7.8 Hz), 7.48 (ddd, 1H, J=8.2 Hz, J=6.9 Hz, J=0.9 Hz), 7.32-7.36 (m, 1H), 7.25 (d, 1H, J=9.1 Hz), 7.00 (d,
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1H, J=8.7 Hz), 6.68 (dd, 1H, J=8.7 Hz, J=3.2 Hz), 3.77 (s, 3H), 3.76 (s, 3H) (see Figure S1 in Supplementary
Materials); 23C-NMR (DMSO-ds), 8: 165.31, 153.13, 152.34, 143.23, 131.76, 131.13, 128.52, 128.04, 127.72,
127.07, 123.96, 123.12, 118.27, 116.77, 111.99, 108.05, 107.47, 56.40, 55.44 (Figure S2); HR-MS: [M+H]*
calculated 324.123034 m/z, found 324.12305 m/z.

N-(3,5-Dimethoxyphenyl)-2-hydroxynaphthalene-1-carboxamide (6)

Yield 64 %; mp 151-153 °C; IR (cm™): 3266, 2999, 2934, 2833, 2540, 1614, 1595, 1549, 1514, 1470, 1453,
1423,1332,1296, 1257, 1227, 1194, 1154, 1064, 985, 846, 813, 739, 711; *H-NMR (DMSO-ds), 6: 10.31 (s, 1H),
10.12 (s, 1H), 7.86 (d, 2H, J=8.4 Hz), 7.67 (d, 1H, J=8.4 Hz), 7.47 (td, 1H, J=7.3 Hz, J=1.1 Hz), 7.33 (td, 1H, J=7.3 Hz,
J=1.1Hz),7.25 (d, 1H, J=8.8 Hz), 7.09 (s, 2H), 6.27 (s, 1H), 3.74 (s, 6H) (Figure S3); 3C-NMR (DMSO-ds), &: 165.83,
160.51, 151.60, 141.30, 131.37, 130.14, 127.96, 127.38, 126.97, 123.38, 123.00, 118.61, 118.34, 97.66, 95.38,
55.08 (Figure S4); HR-MS: [M-H]* calculated 322.10738 m/z, found 322.10788 m/z.

2-Hydroxy-N-(3,4,5-trimethoxyphenyl)naphthalene-1-carboxamide (7)

Yield 43 %; mp 223-225 °C; IR (cm™): 3335, 2943, 2834, 1636, 1586, 1541, 1505, 1448, 1406, 1347, 1299,
1281, 1128, 1030, 1000, 980, 969, 891, 817, 774, 745, 686; H-NMR (DMSO-de), &: 10.29 (s, 1H), 10.11 (s, 1H),
7.86 (d, 1H, J=8.7 Hz), 7.85 (d, 1H, J=8.2 Hz), 7.68 (d, 1H, J=8.2 Hz), 7.46 (ddd, 1H, J=8.2 Hz, J=6.9 Hz, J=0.9 Hz),
7.31-7.35 (m, 1H), 7.25 (s, 2H), 7.25 (d, 1H, J=8.7 Hz), 3.76 (s, 6H), 3.65 (s, 3H) (Figure S5); 3C-NMR (DMSO-d),
6: 165.58, 152.74, 151.62, 135.95, 133.39, 131.41, 130.15, 127.98, 127.38, 126.97, 123.47, 123.02, 118.65,
118.33, 96.86, 60.17, 55.70 (Figure S6); HR-MS: [M+H]* calculated 354.133599 m/z, found 354.13345 m/z.
N-(2,5-Dimethylphenyl)-2-hydroxynaphthalene-1-carboxamide (11)

Yield 71 %; mp 162-165 °C; IR (cm™): 2914, 1646, 1576, 1515, 1434, 1406, 1319, 1261, 1141, 1033, 962, 902,
873, 803, 742, 678, 661; H-NMR (DMSO-ds), &: 10.13 (br. s, 1H), 9.71 (s, 1H), 7.83-7.87 (m, 3H), 7.50 (ddd, 1H,
J=8.2 Hz, J=6.9 Hz, J=1.1 Hz), 7.41 (s, 1H), 7.33 (t, 1H, J=7.5 Hz), 7.24 (d, 1H, J=9.1 Hz), 7.14 (d, 1H, J=7.8 Hz), 6.96
(dd, 1H, J=7.8 Hz, J=1.1 Hz), 2.32 (s, 3H), 2.28 (s, 3H) (Figure S7); 3C-NMR (DMSO-ds), &: 165.56, 151.75, 136.22,
134.83, 131.66, 130.09, 130.03, 129.36, 127.94, 127.47, 126.85, 126.29, 126.05, 123.65, 122.92, 118.42, 118.34,
20.63, 17.62 (Figure S8); HR-MS: [M+H]* calculated 292.133205 m/z, found 292.13290 m/z.
N-(2,6-Dimethylphenyl)-2-hydroxynaphthalene-1-carboxamide (12)

Yield 84 %; mp 195-197 °C; IR (cm™): 3352, 2939, 2834, 1623, 1604, 1574, 1514, 1458, 1319, 1139, 1033,
970, 906, 821, 796, 756, 726, 717, 702, 661; H-NMR (DMSO-ds), &: 10.17 (br.s, 1H), 9.67 (s, 1H), 7.89 (d, 1H,
J=8.2 Hz), 7.84-7.87 (m, 2H), 7.50 (ddd, 1H, J=8.2 Hz, J=6.9 Hz, J=0.9 Hz), 7.33 (t, 1H, J=7.3 Hz), 7.25 (d, 1H,
J=9.1Hz),7.12 (s, 3H), 2.39 (s, 6H) (Figure S9); 3C-NMR (DMSO-ds), 6: 165.44, 151.83, 135.59, 135.27, 131.77,
129.93, 128.01, 127.68, 127.48, 126.81, 126.42, 123.61, 122.88, 118.60, 118.29, 18.66 (Figure S10); HR-MS:
[M+H]* calculated 292.133205 m/z, found 292.13300 m/z.
N-(3,5-Dimethylphenyl)-2-hydroxynaphthalene-1-carboxamide (13)

Yield 70 %; mp 181-184 °C; IR (cm™): 3339, 3217, 1612, 1577, 1531, 1514, 1435, 1351, 1310, 1275, 1244,
1231, 1210, 1146, 968, 842, 819, 753, 743, 685; *H-NMR (DMSO-ds), &: 10.22 (s, 1H), 10.07 (s, 1H), 7.84 (d,
2H, J=8.4 Hz), 7.67 (d, 1H, J=8.4 Hz), 7.49 (td, 1H, J=7.0 Hz, J=1.1 Hz), 7.34 (s, 2H), 7.32 (td, 1H, J=7.0 Hz, J=1.1
Hz), 7.26 (td, 1H, J=9.1 Hz, J=1.3 Hz), 7.34 (s, 1H), 2.27 (s, 6H) (Figure S11); *C-NMR (DMSO-ds), 6: 165.62,
151.55, 139.48, 137.58, 131.45, 129.99, 127.93, 127.40, 126.88, 124.80, 123.44, 122.94, 118.76, 118.36,
117.13, 21.17 (Figure S12); HR-MS: [M-H]* calculated 290.11756 m/z, found 290.11829 m/z.

2-Hydroxy-N-(2,4,6-trimethylphenyl)naphthalene-1-carboxamide (14)
Yield 72 %; mp 175-177 °C; IR (cm™): 3338, 2944, 2831, 1623, 1602, 1577, 1512, 1460, 1396, 1369, 1319,

1223, 1206, 1155, 1030, 971, 906, 847, 821, 796, 772, 754, 724, 713, 690, 672; "H-NMR (DMSO-ds), &: 10.13
(br.s, 1H), 9.56 (s, 1H), 7.87 (d, 1H, J=8.7 Hz), 7.84 (d, 1H, J=8.7 Hz), 7.84 (d, 1H, J=9.1 Hz), 7.49 (ddd, 1H, J=8.2

4 (co) T
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Hz, J/=6.9 Hz, J=1.4 Hz), 7.33 (ddd, 1H, J=8.1 Hz, J=7.0 Hz, J=0.9 Hz), 7.24 (d, 1H, J=9.1 Hz), 6.93 (s, 2H), 2.34 (s,
6H), 2.26 (s, 3H) (Figure S13); 3C-NMR (DMSO-ds), 6: 165.52, 151.79, 135.32, 135.27, 132.65, 131.77, 129.86,
128.26, 127.99, 127.47, 126.76, 123.64, 122.85, 118.68, 118.29, 20.53, 18.55 (Figure S14); HR-MS: [M+H]*
calculated 306.148855 m/z, found 306.14862 m/z.
2-Hydroxy-N-(2-methoxy-5-methylphenyl)naphthalene-1-carboxamide (15)

Yield 73 %; mp 203-205 °C; IR (cm™): 3342, 2945, 2833, 1633, 1585, 1530, 1514, 1482, 1462, 1434, 1370,
1353, 1321, 1300, 1272, 1257, 1210, 1148, 1123, 1030, 969, 896, 868, 817, 799, 750, 719, 687; *H-NMR (DMSO-
ds), 6: 10.41 (br.s, 1H), 9.26 (s, 1H), 8.14 (s, 1H), 8.01 (d, 1H, J=8.7 Hz), 7.87 (d, 1H, J=9.1 Hz), 7.84 (d, 1H, J=8.2
Hz), 7.48 (ddd, 1H, J=8.7 Hz, J=6.9 Hz, J=1.4 Hz), 7.33 (ddd, 1H, J=8.2 Hz, J=6.9 Hz, J=0.9 Hz), 7.24 (d, 1H, J=8.7
Hz), 6.92-6.98 (m, 2H), 3.78 (s, 3H), 2.31 (s, 3H) (Figure S15); *C-NMR (DMSO-ds), &: 165.22, 152.17, 147.34,
131.76,130.89,129.22,128.00, 127.68, 127.39, 126.98, 124.54, 123.96, 123.06, 121.89, 118.28,117.12,111.12,
55.92, 20.58 (Figure S16); HR-MS: [M+H]* calculated 308.12812 m/z, found 308.12820 m/z.

2-Hydroxy-N-(2-methoxy-6-methylphenyl)naphthalene-1-carboxamide (16)

Yield 77 %; mp 142-145 °C; IR (cm™): 3325, 2944, 2833, 1625, 1581, 1514, 1472, 1437, 1354, 1305, 1285,
1139, 1120, 1081, 1031, 970, 912, 818, 761, 741, 712; *H-NMR (DMSO-ds), 6: 10.04 (br.s, 1H), 9.46 (s, 1H), 8.09
(d, 1H, /=7.8 Hz), 7.83 (d, 1H, J=9.1 Hz), 7.83 (d, 1H, J=7.8 Hz), 7.52 (ddd, 1H, J=8.6 Hz, J=7.0 Hz, J=1.4 Hz), 7.33
(ddd, 1H, J=8.2 Hz, J=6.9 Hz, J=0.9 Hz), 7.23 (d, 1H, J=8.7 Hz), 7.20 (t, 1H, J=7.8 Hz), 6.94 (d, 1H, J=7.8 Hz), 6.89
(d, 1H, J=7.3 Hz), 3.86 (s, 3H), 2.35 (s, 3H) (Figure S17); 3C-NMR (DMSO-ds), &: 165.77, 155.34, 151.71, 137.06,
131.81, 129.74, 127.74, 127.42,127.19, 126.58, 125.14, 124.30, 122.84,121.92, 118.83, 118.29, 109.26, 55.71,
18.04 (Figure S18); HR-MS: [M+H]"* calculated 308.12812 m/z, found 308.12823 m/z.

2-Hydroxy-N-(5-methoxy-2-methylphenyl)naphthalene-1-carboxamide (17)

Yield 76 %; mp 140-143 °C; IR (cm™2): 2945, 2833, 1642, 1585, 1513, 1450, 1437, 1350, 1291, 1278, 1146,
1030, 969, 896, 845, 816, 800, 768, 746, 719, 691, 679; *H-NMR (DMSO-ds), &: 10.17 (br.s, 1H), 9.71 (s, 1H),
7.83-7.89 (m, 3H), 7.50 (ddd, 1H, J=8.2 Hz, J=6.9 Hz, J=0.9 Hz), 7.31-7.36 (m, 1H), 7.26 (s, 1H), 7.25 (d, 1H,
J=11.4 Hz), 7.16 (d, 1H, J=8.2 Hz), 6.74 (dd, 1H, J=8.2 Hz, J=2.7 Hz), 3.77 (s, 3H), 2.25 (s, 3H) (Figure $19); 13C-
NMR (DMSO-ds), 6: 165.56, 157.35, 151.83, 137.20, 131.67, 130.75, 130.17, 127.95, 127.50, 126.90, 123.84,
123.69, 122.95, 118.35, 118.21, 111.14, 110.60, 55.17, 17.18 (Figure S20); HR-MS: [M+H]" calculated
308.12812 m/z, found 308.12811 m/z.

N-(2-Chloro-5-methoxyphenyl)-2-hydroxynaphthalene-1-carboxamide (18)

Yield 87 %; mp 129-132 °C; IR (cm™): 1635, 1583, 1512, 1456, 1435, 1413, 1353, 1273, 1231, 1213, 1190,
1168, 1150, 1126, 999, 968, 892, 860, 842, 812, 789, 743, 728, 677; 'H-NMR (DMSO-ds), &: 10.48 (br.s, 1H),
9.87 (s, 1H), 8.04 (d, 1H, J=8.7 Hz), 7.89 (d, 1H, J=9.1 Hz), 7.85 (d, 1H, J=7.8 Hz), 7.70 (d, 1H, J=2.5 Hz), 7.50 (t,
1H, J=7.3 Hz), 7.44 (d, 1H, J=8.7 Hz), 7.34 (t, 1H, J=7.1 Hz), 7.25 (d, 1H, J=8.7 Hz), 6.84 (dd, 1H, J=8.9 Hz, J=2.5
Hz), 3.82 (s, 3H) (Figure S21); 13C-NMR (DMSO-ds), 6: 165.71, 158.22, 152.46, 135.82, 131.71, 131.08, 129.83,
128.03, 127.63, 127.05, 123.89, 123.09, 118.27, 117.29, 116.62, 111.55, 110.89, 55.56 (Figure S22); HR-MS:
[M+H]* calculated 328.073497 m/z, found 328.07379 m/z.

N-(5-Bromo-2-methoxyphenyl)-2-hydroxynaphthalene-1-carboxamide (19)

Yield 78 %; mp 231-234 °C; IR (cm™): 1635, 1582, 1517, 1476, 1457, 1430, 1408, 1370, 1352, 1319, 1273,
1253, 1240, 1223, 1204, 1174, 1146, 1126, 1022, 966, 911, 879, 867, 816, 797, 752, 719, 700; *H-NMR (DMSO-
ds), 8: 10.51 (s, 1H), 9.57 (s, 1H), 8.54 (d, 1H, J=2.7 Hz), 8.00 (d, 1H, J=8.7 Hz), 7.88 (d, 1H, J=9.1 Hz), 7.84 (d, 1H,
J=7.8 Hz), 7.48 (ddd, 1H, J=8.2 Hz, }=6.9 Hz, J=1.4 Hz), 7.32-7.36 (m, 1H), 7.30 (dd, 1H, J=8.7 Hz, J=2.7 Hz), 7.24
(d, 1H, J=9.1 Hz), 7.06 (d, 1H, J=8.7 Hz), 3.82 (s, 3H) (Figure 523); *C-NMR (DMSO-ds), &: 165.65, 152.41, 148.49,
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131.71,131.20,129.22,128.03,127.67,127.11,126.49,123.88,123.12,123.09, 118.25, 116.53,113.16, 111.68,
56.15 (Figure S24); HR-MS: [M+H]* calculated 372.022975 m/z, found 372.02365 m/z.

2-Hydroxy-N-[2-methoxy-5-(trifluoromethyl)phenyllnaphthalene-1-carboxamide (20)

Yield 75 %; mp 205-208 °C; IR (cm™): 3425, 3194, 1641, 1616, 1583, 1533, 1510, 1484, 1463, 1438, 1341, 1323,
1267, 1232, 1207, 1164, 1124, 1108, 1074, 1018, 969, 928, 895, 812, 792, 754, 711; *H-NMR (DMSO-ds), 6: 10.53
(s, 1H), 9.72 (s, 1H), 8.73 (d, 1H, J=1.8 Hz), 8.01 (d, 1H, J=8.2 Hz), 7.89 (d, 1H, J=9.1 Hz), 7.85 (d, 1H, J=7.8 Hz), 7.46-
7.53 (m, 2H), 7.34 (t, 1H, J=7.3 Hz), 7.27 (d, 1H, J=8.7 Hz), 7.25 (d, 1H, J=8.7 Hz), 3.91 (s, 3H) (Figure 525); 3C-NMR
(DMSO-dg), 6: 165.94, 152.47, 151.88, 131.73, 131.24, 128.24, 128.06, 127.68, 127.15, 124.55 (q, J=271.7 Hz),
123.89, 123.15, 121.47 (q, J=4.8 Hz), 120.89 (q, J/=31.8 Hz), 118.29, 117.22 (q, J=3.9 Hz), 116.55, 111.45, 56.28
(Figure S26); HR-MS: [M+H]* calculated 362.099854 m/z, found 362.10028 m/z.

2-Hydroxy-N-[4-methoxy-3-(trifluoromethyl)phenyllnaphthalene-1-carboxamide (21)

Yield 65 %; mp 178-181 °C; IR (cm™): 3404, 3172, 1645, 1623, 1584, 1538, 1516, 1499, 1462, 1436, 1423,
1323, 1271, 1233, 1207, 1142, 1112, 1056, 1022, 972, 897, 815, 743, 661; *H-NMR (DMSO-ds), 6: 11.52 (s,
1H), 10.15 (br.s, 1H), 8.22 (d, 1H, J=2.7 Hz), 7.96 (dd, 1H, J=8.9 Hz, J=2.5 Hz), 7.84-7.88 (m, 2H), 7.69 (d, 1H,
J=8.7 Hz), 7.46 (ddd, 1H, J=8.3 Hz, J=7.0 Hz, J=1.1 Hz), 7.31-7.35 (m, 1H), 7.29 (d, 1H, J=9.1 Hz), 7.26 (d, 1H,
J=9.1 Hz), 3.89 (s, 3H) (Figure S27); 3C-NMR (DMSO-ds), &: 165.67, 152.79 (g, J=1.9 Hz), 151.71, 132.58,
131.37, 130.31, 127.99, 127.39, 127.06, 124.63, 123.65 (q, J=271.7 Hz), 123.40, 123.06, 118.34, 118.23,
117.61 (g, J=5.8 Hz), 116.61 (q, J=29.9 Hz), 113.41, 56.28 (Figure S28); HR-MS: [M+H]* calculated
362.099854 m/z, found 362.10037 m/z.

2-Hydroxy-N-[2-methyl-5-(trifluoromethyl)phenyllnaphthalene-1-carboxamide (22)

Yield 67 %; mp 143-146 °C; IR (cm™): 3230, 2927, 1634, 1623, 1585, 1544, 1514, 1492, 1438, 1418, 1326,
1277, 1264, 1224, 1163, 1111, 1076, 972, 925, 883, 818, 761, 739, 710; *H-NMR (DMSO-d), 5: 10.26 (s, 1H),
10.03 (s, 1H), 8.06 (s, 1H), 7.85-7.89 (m, 3H), 7.48-7.53 (m, 3H), 7.33-7.37 (m, 1H), 7.26 (d, 1H, J=9.1 Hz), 2.42
(s, 3H) (Figure S29); *C-NMR (DMSO-ds), 6: 165.96, 151.98, 137.12, 136.78, 131.57, 131.38, 130.45, 127.09,
127.48,127.07,126.76 (q, J/=31.8 Hz), 124.29 (q, J/=271.7 Hz), 123.58, 123.06, 121.54 (q, J=3.9 Hz), 121.46 (q,
J=3.9 Hz), 118.33, 117.76, 18.03 (Figure S30); HR-MS: [M+H]* calculated 346.10494 m/z, found 346.10507 m/z.

2-Hydroxy-N-[4-methyl-3-(trifluoromethyl)phenyl]naphthalene-1-carboxamide (23)

Yield 60 %; mp 155-160 °C; IR (cm™): 3053, 2674, 1634, 1598, 1584, 1539, 1513, 1502, 1436, 1419, 1328,
1273, 1241, 1207, 1167, 1140, 1123, 1107, 1053, 1042, 967, 809, 744, 682; 'H-NMR (DMSO-ds), 6: 10.62 (s,
1H), 10.17 (s, 1H), 8.28 (d, 1H, J=1.8 Hz), 7.84-7.90 (m, 3H), 7.68 (d, 1H, J=8.2 Hz), 7.44-7.48 (m, 1H), 7.42 (d,
1H, J=8.2 Hz), 7.31-7.35 (m, 1H), 7.26 (d, 1H, J=8.7 Hz), 2.42 (s, 3H) (Figure S31); 3C-NMR (DMSO-ds), &:
166.05, 151.76, 137.85, 132.65, 131.32, 130.39, 130.28 (q, /=1.9 Hz), 128.00, 127.49 (q, J/=28.9 Hz), 127.38,
127.09, 124.50 (q, J=273.6 Hz), 123.33, 123.07, 122.57, 118.33, 118.16, 116.15 (q, J=5.8 Hz), 18.23 (q,
J=1.9 Hz) (Figure S32); HR-MS: [M+H]* calculated 346.10494 m/z, found 346.10532 m/z.

2-Hydroxy-N-[4-nitro-3-(trifluoromethyl)phenyllnaphthalene-1-carboxamide (27)

Yield 18 %; mp 157-160 °C; IR (cm™): 3272, 1672, 1657, 1623, 1514, 1437, 1417, 1353, 1333, 1279, 1235,
1214, 1179, 1143, 1042, 968, 891, 834, 815, 804, 754, 744, 681; *H-NMR (DMSO-ds), &: 11.24 (s, 1H), 10.35
(br.s, 1H), 8.52 (s, 1H), 8.23-8.29 (m, 2H), 7.92 (d, 1H, J=9.1 Hz), 7.88 (d, 1H, J=8.2 Hz), 7.70 (d, 1H, J=8.7 Hz),
7.48 (ddd, 1H, J=8.6 Hz, J=7.0 Hz, J=1.4 Hz), 7.33-7.38 (m, 1H), 7.28 (d, 1H, J=9.1 Hz) (Figure $33); 3C-NMR
(DMSO-ds), 6: 167.00, 152.14, 144.12, 141.45, 131.12, 131.03, 128.11, 127.85, 127.37, 127.35, 123.27,
123.13, 123.08 (q, J/=32.8 Hz), 122.37, 122.11 (q, J=273.6 Hz), 118.27, 117.32 (q, J=6.1 Hz), 117.20 (Figure
S34); HR-MS: [M+H]* calculated 377.074368 m/z, found 377.07495 m/z.
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Lipophilicity determination by HPLC

An HPLC system Agilent 1200 equipped with a DAD detector (Agilent, Santa Clara, CA, USA) was used. A
chromatographic column Symmetry® Cis 5 um, 4.6x250 mm, part No. WAT054275 (Waters Corp., Milford,
MA, USA) was used. The HPLC separation process was monitored and evaluated with EZChrom Elite software
ver. 3.3.2 (Agilent) [56]. Isocratic elution by a mixture of MeOH p.a. (72 %) and H,O-HPLC Mili-Q grade (28 %)
as a mobile phase was used for the determination of capacity factor k. Isocratic elution by a mixture of MeOH
p.a. (72 %) and acetate-buffered saline (pH 7.4 and pH 6.5) (28 %) as a mobile phase was used for the
determination of distribution coefficients expressed as D74 and Dgs. The total flow of the column was 1.0 mL
min’, the injection volume was 20 pL, the column temperature was 40 °C, and the sample temperature was
10 °C. The detection wavelength of 210 nm was chosen. A KI methanolic solution was used to determine the
dead times (t,). Retention times (t:;) were measured in minutes. The capacity factors k were calculated
according to the formula k = (t-—t,)/t,, where tz is the retention time of the solute, and t, is the dead time
obtained using an unretained analyte. The distribution coefficients Doy were calculated according to the
formula Dyn = (t—to)/to. Each experiment was repeated three times. The experimental values of lipophilicity
of individual compounds are shown in Table 1.

Antibacterial screening

In vitro antibacterial activity of the synthesized compounds was evaluated against representatives of
multidrug-resistant bacteria, three clinical isolates of methicillin-resistant S. aureus: clinical isolate of animal
origin, MRSA 63718 [57] (Department of Infectious Diseases and Microbiology, Faculty of Veterinary
Medicine, University of Veterinary Sciences Brno, Czech Republic), and MRSA SA 630 and MRSA SA 3202 [57]
(National Institute of Public Health, Prague, Czech Republic), both of human origin. These three clinical isolates,
carrying the mecA gene [58], were classified as vancomycin-susceptible (but with higher MIC of vancomycin
equal to 2 ug mL? (VA2-MRSA) within the susceptible range for MRSA 63718) methicillin-resistant S. aureus
(VS-MRSA) [57]. Vancomycin- and methicillin-susceptible S. aureus ATCC 29213 and vancomycin-susceptible
Enterococcus faecalis ATCC 29212, obtained from the American Type Culture Collection, were used as the
reference and quality control strains. Three vanA gene-carrying vancomycin-resistant isolates of E. faecalis (VRE
342B, VRE 368, VRE 725B) were provided by Oravcova et al. [59]. In addition, all the prepared compounds were
tested against the Gram-negative bacteria E. coli ATCC 25922 (American Type Culture Collection).

The minimum inhibitory concentrations (MICs) were evaluated using the microtitration broth method
according to the CLSI [60,61], with some modifications. The compounds were dissolved in DMSO (Sigma, St.
Louis, MO, USA) to get a concentration 10 pg mL? and diluted in a microtitration plate in an appropriate
medium, i.e. Cation Adjusted Mueller—Hinton Broth (CaMH, Oxoid, Basingstoke, UK) for staphylococci, E. coli;
and Brain Heart Infusion Broth (BHI, Oxoid) for enterococci to reach the final concentration of 256 to
0.125 pg mL. Microtitre plates were inoculated with test microorganisms so that the final concentration of
was 10° bacterial cells in a microtiter plate. Ampicillin and ciprofloxacin (Sigma) were used as reference drugs.
A drug-free control and a sterility control were included. The plates were incubated for 24 h at 37 °C for all the
tested bacteria. After static incubation in the darkness in an aerobic atmosphere, the MIC was visually evaluated
as the lowest concentration of the tested compound, which completely inhibited the growth of the
microorganism. The experiments were repeated three times. The results are summarized in Table 2.

Antimycobacterial screening

The evaluation of in vitro antimycobacterial activity of the compounds was performed against Mycobac-
terium tuberculosis ATCC 25177/Hsz7Ra, Mycobacterium kansasii DSM 44162 and Mycobacterium smegmatis
ATCC 700084.
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Table 2. In vitro activities (MICs) of investigated compounds against bacteria compared to ampicillin (AMP) and
ciprofloxacin (CPX)

MIC, pM
Comp. R < qureus  MRSA MRSA MRSA o coalis  VRE VRE VRE £ coli
' 63718  SA630  SA3202 - 3428 7258 368 :
1 H >972 >972 243 122 >972 >972 >972 >972 972
2 2-OCH; >873 >873 >873 >873 >873 >873 >873 >873 873
3 3-OCH; 436 436 873 218 >873 >873 >873 >873 873
a 4-OCH; >873 >873 >873 >873 >873 >873 >873 >873 873
5 2,5-OCH; 792 792 792 792 792 792 792 792 792
6 3,5-OCHs 198 396 396 198 792 792 792 792 792
7 3,4,5-OCH3 838 838 838 419 724 724 724 724 838
8 2-CH; 462 462 462 462 462 462 462 462 462
9 3-CHs 231 462 231 231 462 462 462 462 462
10 4-CH; 231 462 462 462 462 462 462 462 462
11 2,5-CHs 110 110 110 110 879 879 879 879 879
12 2,6-CH; 439 879 439 439 879 879 879 879 879
13 3,5-CHs 54.9 54.9 54.9 54.9 879 879 879 879 879
14 2,4,6-CH3 838 838 838 419 838 838 838 838 838
15 2-OCHs-5-CH; 833 833 833 833 833 833 833 833 833
16 2-OCHs-6-CH; 833 833 833 833 416 208 833 208 833
17 2-CH3-5-OCH; 104 416 208 208 833 833 833 833 833
18 2-Cl-5-OCHj 48.8 195 48.8 97.6 781 781 781 781 781
19 2-OCH3-5-Br 688 688 688 688 688 688 688 688 688
20 2-OCH3-5-CF3 709 709 709 709 709 709 709 709 709
21 3-CF+-4-OCH; 886 177 88.6 88.6 88.6 177 88.6 88.6 709
22 2-CH3-5-CF3 2.90 5.79 2.90 2.90 46.3 92.6 92.6 46.3 23.2
23 3-CF3-4-CH3 23.2 371 92.7 46.3 741 741 741 741 741
24 2-NO, 26.0 415 104 51.9 830 830 830 830 830
25 3-NO, 208 26.0 208 208 830 830 830 830 830
26 4-NO, >830 830 415 104 415 830 830 830 830
27 3-CF+-4-NO,  0.332 1.33 1.33 1.33 21.3 42,5 42,5 21.3 680
AMP - 5.72 45.8 45.8 45.8 2.81 11.5 11.5 11.5 45.8
CPX - 0.75 24.2 24.2 24.2 1.51 3.02 193 3.02 0377

The broth dilution micro-method in Middlebrook 7H9 medium (Difco, Lawrence, KS, USA) supplemented
with ADC Enrichment (Difco) was used to determine the minimum inhibitory concentration (MIC) as
previously described [61]. The compounds were dissolved in DMSO (Sigma), and the final concentration of
DMSO did not exceed 2.5 % of the total solution composition. The final concentrations of the evaluated
compounds, ranging from 256 to 0.125 pg mL?, were obtained by twofold serial dilution of the stock solution
in a microtiter plate with a sterile medium. Bacterial inocula were prepared by transferring colonies from
culture to sterile water. The plate was inoculated by tested microorganisms. The final concentration of
bacterial cells was 1.5x10° for M. tuberculosis and 10° cells in a microtiter plate for other mycobacteria.
Isoniazid and rifampicin (Sigma) were used as reference antimycobacterial drugs. Drug-free controls, sterility
controls, and controls consisting of medium and DMSO alone were included. The plates were incubated for a
defined time at an appropriate temperature (3 days at 37 °C for M. smegmatis, and 14 days at 37 °C for M.
tuberculosis and M. kansasii). After incubation, the MIC was visually evaluated as the lowest concentration of the
tested compound, which completely inhibited the growth of the microorganism. The MICs against M. tuberculosis
were evaluated by Alamar blue (Oxoid). After incubation, 10 % of Alamar blue was added to each well, and the
plate was incubated for 24 h. The MIC values were assessed as the lowest concentration of the tested compounds,
which prevented changing blue resazurin to pink resorufin. The experiments were repeated three times. The
minimum inhibitory concentrations (MICs) were defined as the lowest concentration of the compound at which
no visible bacterial growth was observed. The MIC value is routinely and widely used in bacterial assays and is a
standard detection limit according to the CLSI [60]. The results are summarized in Table 3.

Cytotoxicity assay

Cytotoxicity of the compounds was determined using an LDH assay kit (Roche Diagnostics, Mannheim,
Germany) as described previously [43,54]. Human monocytic leukemia THP-1 cells (European Collection of
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Cell Cultures, Salisbury, UK) were exposed for 24 h at 37 °C to various compound concentrations ranging from
0.37 to 30 uM in RPMI 1640 medium. For LDH assays, cells were seeded into 96-well plates (5x10% cells/well
in 100 pL culture medium) in triplicate in serum-free RPMI 1640 medium and measurements were taken 24 h
after the treatment with the compounds. The maximum concentration of DMSO (Sigma) in the assays never
exceeded 0.1 %. Oxaliplatin and camptothecin (Sigma) were used as reference drugs. The median lethal dose
values, LCso, were deduced through the production of a dose-response curve. All data from three
independent experiments were evaluated using GraphPad Prism 5.00 software (GraphPadSoftware, San
Diego, CA, USA) [62]. The results are summarized in Table 3.

Table 3. In vitro activities (MICs) of investigated compounds against mycobacteria compared to isoniazid (INH),
rifampicin (RIF), and in vitro cytotoxicity assay (LCso) of choice compounds on human monocytic leukemia THP-1 cells
compared to oxaliplatin (OXP), camptothecin (CMP)

MIC, uM
Comp. R M. tuberculosis M. kansasii M. smegmatis LCso, UM
1 H 486 15.2 486 >20 [43]
2 2-OCH3 >873 >873 >873 -
3 3-OCH3 218 109 218 -
4 4-OCH3 109 218 436 -
5 2,5-OCH3 396 792 792 -
6 3,5-OCH3 396 98.9 396 >30
7 3,4,5-OCHs 210 838 210 -
8 2-CH3 231 115 462 -
9 3-CHs 231 115 231 -
10 4-CH3 231 115 >923 -
11 2,5-CHs 439 110 220 -
12 2,6-CHs 439 879 879 -
13 3,5-CHs 439 110 220 >30
14 2,4,6-CH3 210 838 210 -
15 2-OCHs-5-CH3 416 833 833 -
16 2-OCH3-6-CH3 416 833 416 -
17 2-CHs-5-OCHs 416 833 416 -
18 2-CI-5-OCH3 391 391 781 -
19 2-OCH3-5-Br 344 688 688 -
20 2-OCH3-5-CF3 354 709 709 -
21 3-CF3-4-OCHs 354 709 177 -
22 2-CHs-5-CF3 46.3 46.3 23.2 >30
23 3-CF3-4-CHs 371 741 46.3 -
24 2-NO, 104 51.9 208 >20 [43]
25 3-NO, 104 104 208 >20 [43]
26 4-NO, 104 415 208 2.5+0.1 [43]
27 3-CF3-4-NOy 85.0 21.3 21.3 >30
INH - 36.5 233 117 -
RIF - 9.71 0.150 19.4 -
OXP - - - - 1.7+0.6
CmMP - - - - 0.16+0.07

Results and discussion

Chemistry

The compounds were prepared by a simple (click chemistry method) but innovative microwave synthesis
from commercially available building blocks (2-hydroxy-1-naphthoic acid and multisubstituted anilines) in
anhydrous chlorobenzene in the presence of PCls. The synthesis is depicted in Scheme 1 and a list of all
studied compounds is given in Table 1. The unsubstituted derivative 1 and monosubstituted compounds 2-4,
8-10, 24-26 have already been described by Gonec et al. [43] but are listed here for the completeness of the
entire study.

Since the basis for understanding the behavior of bioactive molecules is the knowledge of their lipo-
hydrophilic properties, lipophilicity parameters were determined for all compounds, namely log k (logarithm
of the capacity factor) and log D (logarithm of the distribution coefficient) at physiological pH 6.5 and 7.4.
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Scheme 1. Synthesis of ring-substituted 2-hydroxynaphthalene-1-carboxanilides 1-27. Reagents and conditions:
(a) PCls, chlorobenzene, microwave synthesis (500 W, 130 °C, 15 min)

The capacity factor and distribution coefficients were measured by RP-HPLC on a C18 column with
methanol as an organic modifier of the mobile phase. In addition to the experimental lipophilicities, predicted
log P values were also calculated using ACD/Percepta [55], see Table 1. In addition to lipophilicity, Table 1
also shows the predicted (ACD/Percepta [55]) electronic oiay parameters of the whole substituted anilide ring,
characterizing the electron-withdrawing or donating ability of the molecular system. The values of g, are
found in a wide range from 0.01 to 1.36, so the compounds contain substituents with both electron-donating
and slightly electron-withdrawing properties.

The graphs in Figure 1 show the correlations between the experimental and calculated lipophilicity values,
and as can be seen from the correlation coefficients r, which range from 0.60 to 0.63 (n = 27), the agreement
is small, which probably indicates a significant influence of the free phenol group, which the software cannot
capture. On the other hand, the graphs in Figure 2 illustrate the relationships between log k and log D, which,
according to the correlation coefficient r of ca. 0.99 (n = 27), are very good.

A 08 B 08

06

04

= pi
g a
0.2 go2
0.0 0.0
0.2 r r v \ 02 . . v )
10 45 5.0 55 6.0 40 45 5.0 55 6.0
log P log P
Cos -
06 1
L 04 1
4
D02
0.0 1
-0.2

4.0 45 5.0 5.5 6.0
log P

Figure 1. Comparison of experimentally determined values of log k (A), log Dss (B), and log D7.4 (C) with calculated
log P (ACD/Percepta [55]) of carboxanilides 1-27

Figure 3 shows the order of the compounds according to the increasing log k value. The least lipophilic are
methoxylated derivatives 7 (R = 3,4,5-OCHs) and 4 (R = 4-OCH3s), while the most lipophilic are compounds 20
(R = 2-OCH3-5-CF3) and 19 (R = 2-OCHs-5-Br). The unsubstituted derivative 1 (the fourth least lipophilic
compound in this series) showed the largest deviation between the log k and log D values.
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Figure 2. Cross-correlations of experimentally determined values of log k versus log Des (A), log k versus log D7.4 (B)
and log De.s versus log D7.4 (C) of carboxanilides 1-27
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Figure 3. Order of individual derivatives arranged according to increasing log k values

Regarding all these observations, it should be summarized that for these 2-hydroxynaphthalene-1-carbo-
xamides on the ring-multisubstituted anilide, standard commercially available lipophilicity prediction
programs are unable to provide relevant data due to the high incidence of intra- and intermolecular
interactions. On the other hand, the presence of an ionizable acidic phenolic group in the vicinity of the amide
bond does not cause significant differences in the experimental values obtained for different mobile phase
properties/compositions.

In vitro biological activities

The biological properties were assessed for in vitro antibacterial and antimycobacterial activity. In
addition, all the compounds were also evaluated for their cytotoxicity against human monocytic leukemia
THP-1 cells. The selection of the studied bacterial strains was adopted following the CLSI (National Committee
for Clinical Laboratory Standards) international reference methodologies [63], i.e. standardization. For this
purpose, universally sensitive collection strains from ATCC (Staphylococcus aureus ATCC 29213, Enterococcus
faecalis ATCC 29212 and Escherichia coli ATCC 25922) were selected. The second aspect of strain selection
was the current state of occurrence of strains with an epidemiologically significant type of resistance,
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represented by clinical isolates of human and veterinary origin, i.e. different sequence types limited to human
and animal populations, e.g. methicillin-resistant Staphylococcus aureus (MRSA) SA 3202, SA 630, 63718
isolates carrying the mecA gene [57]. In the case of vancomycin-resistant E. faecalis (VRE) 342B, 368, and
725B isolates carrying the vanA gene [59], these were isolates from wild birds colonized from US hospital
wastewater, as confirmed. Therefore, it can be concluded that the tested strains differed in the spectrum of
antibiotic resistance, genetic makeup, and probably accessory genome. Activities are expressed as minimum
inhibitory concentrations (MICs), as shown in Table 2.

To obtain a comprehensive overview of the antibacterial properties of the investigated compounds, all
derivatives were tested in vitro against Mycobacterium tuberculosis ATCC 25177/Hs;Ra, Mycobacterium kan-
sasii DSM 44162 and Mycobacterium smegmatis ATCC 700084, activities are expressed as MICs as reported in
Table 3. In order to reduce risks, a replacement of model pathogens is commonly used in basic laboratory
screening. For M. tuberculosis, avirulent strain Hs;Ra is used, which has a similar pathology as M. tuberculosis
strains infecting humans and, thus, represents a good model for testing antitubercular agents [64]. The genus
Mycobacterium is a closely related group of fast- and slow-growing species. In addition to M. tuberculosis, there
are a number of other so-called atypical (hon-tuberculous) mycobacteria, important environmental pathogens,
that cause a wide range of diseases (pulmonary diseases, lymphadenitis, skin and soft tissue diseases, gastro-
intestinal and skeletal infections), especially in immunocompromised patients [65-68]. These non-tuberculous
strains include the fast-growing, e.g. M. smegmatis [69,70] and the slow-growing, e.g. M. kansasii [71,72].

Antimicrobial activities

Looking at Tables 2 and 3, it should be noted that the compounds had very limited activity. Of all the studied
derivatives, only a total of 7 compounds (13, 18, 21-24 and 27) showed some activity, with 13 (R = 3,5-CHs),
22 (R = 2-CH5-5-CF3) and 27 (R = 3-CF3-4-NO) being truly effective. Of this number, it is, of course, not possible to
meaningfully discuss structure-activity relationships. On the other hand, it is important to note that despite the
small number of active compounds, their efficacy, when they were active, was at the level of clinically used drugs.

Compounds 13, 22 and 27 were active against S. aureus/MRSA, two of which (22, 27) were also active against
E. faecalis/VRE. Since the compounds were active against both the collection strains and resistant isolates, it is
possible to speculate on a specific mechanism of action different from that of beta-lactam or quinolone
antibiotics and the demonstrated resistance. The lower potency against E. faecalis/VRE compared to S.
aureus/MRSA is likely due to the overall higher resistance of E. faecalis/VRE, including their ability to be
facultative anaerobic bacteria [73-76]. It should be added that compound 22 was the only one that surprisingly
showed activity against the Gram-negative collection strain E. coli. Several compounds also demonstrated
activity against mycobacteria. Derivatives 22 and 27 were active against all three evaluated mycobacterial
species. In addition, 23 (R = 3-CF3-4-CHs) showed activity against the fast-growing M. smegmatis and 24 (4-NO)
also against the slow-growing M. kansasii.

Considering the activities of previously published monosubstituted derivatives, 2-hydroxy-N-(2-nitro-
phenyl)naphthalene-1-carboxamide (24) was the most antimicrobially active (data see Tables 2 and 3),
followed by N-(4-bromophenyl)-2-hydroxynaphthalene-1-carboxamide and 2-hydroxy-N-(4-trifluoromethyl-
phenyl)naphthalene-1-carboxamide against MRSA SA 630 and SA 3202 (MICs 47 and 94 uM, respectively)
and M. kansasii (MICs 93 and 23 uM, respectively) [43]. Therefore, it can be stated that overall the previously
described compounds had even more limited effects than these disubstituted derivatives.

Suppose these new observations are generalized from the point of view of the significance of substituents
in the anilide part of the molecule. In that case, it is necessary to state that substitution with methoxy groups
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is completely disadvantageous for any antimicrobial activity. The situation changes slightly if the methoxy
moiety is replaced by a methyl group; compare 5 (R = 2,5-OCHs;) and 6 (R = 3,5-OCH3) with 11 (R = 2,5-CHs)
and 13 (R = 3,5-CHjs). Similar findings were published recently [52,54]. Disubstitution with 3,5-CHs led to an
increase in antistaphylococcal activity. The subsequent combination of methyl with a CF3 group in the meta
position (compounds 23 and especially 22) resulted in a further significant increase and, above all, the extension
of activity to E. faecalis/VRE, Gram-negative bacteria and mycobacteria (compare 20 (R = 2-OCH3-5-CF; and 22
(R = 2-CH3-5-CF3)). The positive influence of the CF; moiety on the potency and extension of antimicrobial
activity was also observed in the nitrated disubstituted derivative 27 (compared with compound 26). These
observations (the advantage of combining CH; or NO, with CF3) are completely new and have not been found
in previously studied isomers [37,54].

The individual derivatives ordered by increasing electron o) parameter are shown in Figure 4, where
log k values are also given for comparison. The hatched bars in the graph indicate seven compounds (i.e. 13,
18, 21-24 and 27) demonstrating some activity. The first more significant individual effect was achieved at a
log k value of 0.16 (compound 21, R = 3-CFs-4-OCHs). On the other hand, the activity disappeared at log k
values of 0.46 (compounds 23 (R = 3-CF3-4-CHs), 18 (R = 2-CI-5-OCHjs)). The highest/widest activity was
achieved with a log k value higher than 0.31 (27, R = 3-CF3-4-NO,) and lower than 0.34 (22, R = 2-CH3-5-CF3).
So, it is evident that lipophilicity plays a secondary role.
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On the other hand, the potency and wide antimicrobial activity are much more influenced by the electron
O(ar) parameter; it is advantageous if it is higher than 0.58 (derivative 21 (R = 3-CFs-4-OCH3), see Figure 4). In
accordance with the Michael acceptor theory, the higher the substituent causes an electron deficit, the better.
Therefore, it seems that this is a substituent-dependent activity (dependent on the type and position of the
substituents), where the electron-deficient state of the molecule (characterized by the magnitude of the
parameter oan) plays a significant role, similarly as described, e.g. in [29,43,77-80]. Thus, it can be said that the
investigated effective compounds meet the definition of so-called Michael acceptors, where in addition to
suitable lipophilicity for penetration through the bacterial wall, the overall electron deficit in the molecule is
key for efficacy and binding to targets (bacterial biomolecules) appears to occur primarily through polar

groups and a planar nt-it system.

Cytotoxicity
Preliminary in vitro cytotoxicity screening of selected active compounds was performed using the THP-1

cell line. Cytotoxicity was expressed as LCso value (lethal concentration for 50 % of the cell population), see
Table 3. Treatment with 30 uM of the new compounds did not result in a significant lethal effect on THP-1
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cells (e.g. LCso values of oxaliplatin and camptothecin were 1.7+0.64 and 0.16+0.07 uM). Among nine
previously synthesized monosubstituted 2-hydroxynaphthalene-1-carboxanilides, the cytotoxicity of four of
them was previously examined. A significant lethal effect was detected only in the case of compound 26
(LCso = 2.5 uM), while compounds 1, 24, and 25 did not show significant cytotoxicity (LCso > 20 uM) [43].
Based on these observations, it can be concluded that tested substances except 26 can be considered non-
toxic substances for the subsequent design of new antimicrobial agents.

Computational ADME Properties

In the early stage of the drug discovery process, especially orally administered drugs, it is extremely
important to perform at least indicative ADME profiling to provide critical information about the basic
behavior of a potential drug in the body. Basic information obtained from such studies helps guide further
structural optimizations to obtain molecules with more favorable pharmacokinetic parameters while
maintaining the existing efficiency potential. A variety of software is advantageously used for basic ADME
screening, and ADME profiling is subsequently verified for selected drug candidates in preclinical and clinical
studies [81-83]. The Lipinski Rule of Five (Ro5) is one of the most accepted recommendations concerning the
physicochemical parameters of biologically active compounds, and all medicinal chemists try to follow it
when designing molecules [84]. Ro5 contains the limits of specific molecular descriptors (MW <500, log P <5,
HBD <5, HBA <10) set based on experimentally and statistically obtained results so that a compound that
meets this recommendation has a higher chance of becoming a drug. However, a good drug-like score does
not make a molecule a drug, and vice versa [85,86]. In addition, information has been added about
compounds related to the Veber rule, which states that a compound with 10 or fewer rotational bonds (RB)
and a polar surface area (TPSA) of no higher than 1.4 nm? (140 A?) should have good oral bioavailability
[81,87]. It is clear that ADMET-friendly properties, such as lipophilicity, polar surface area, etc, are important
in the context of specific ligand-receptor interactions.

The following Table 4 shows the predicted ADME-influencing properties of the most effective compounds
(13, 22, 27). The compounds are rather rigid and expected to be nearly planar [54]. All contain a free acidic
phenolic group, which is crucial for biological activity [40,41,43], meaning that these acidic compounds in
plasma bind predominantly to human serum albumin [88]. In addition to Ro5 parameters, other parameters,
such as intestinal absorption and permeation into the brain (the effectiveness of antibiotics in the brain is
important), are listed in Table 4. All the parameters were predicted using the commercially available program
ACD/Percepta [55].

All the discussed agents have molecular weights (MW) significantly <500. On the other hand, the compounds
have rather higher lipophilicity (log P =5). All the compounds meet the criteria for the number of H-bond donors
(HBD) and acceptors (HBA). The number of rotatable bonds (RB) is in the narrow range of 2 to 4. The topological
polar surface area (TPSA) has been recognized as a good indicator of intestinal drug absorption (TPSA <1.2-1.4 nm?
(<120-140 A2)) and blood-brain barrier (BBB) penetration (TPSA <0.6 nm? (<60 A?)) [87,89,90]. The TPSA value of
0.49 nm? (49 A?) indicates that compounds 13 and 22 should have good intestinal absorption as well as adequate
BBB penetration. On the other hand, the TPSA = 0. 98 nm? (98 A?) for compound 27 suggests only good intestinal
absorption. The predicted value of the absorption rate in the jejunum (k. = 0.055 min) is the same for all
derivatives. A remarkable prediction was made by ACD/Percepta [55] for blood-brain barrier (BBB) permeation.
In general, log BB > 0.3 is for BBB permeable drugs and log BB <-0.3 is for impermeable drugs [91]. The log BB
values of -0.11 (22) and -0.24 (27), respectively, indicate that both compounds are probably CNS inactive due to
low brain penetration (as already suggested by the TPSA value for 27). Conversely, the log BB = 0.54 for 13 indi-
cates good BBB penetration. More informative are the values of the permeability surface-area product (expressed
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as log PS) [92] in the range of -1.2 to 1.3. The brain plasma equilibrium rate predicted by ACD/Percepta [55] for
compound 13 is -3.2, suggesting that this compound may achieve sufficient brain penetration for CNS activity.

Table 4. Values of parameters characterizing physicochemical properties of discussed effective 2-hydroxynaphthalene-
1-carboxanilides predicted using ACD/Percepta [55]

Comp. MW logP HBD HBA RB TPSA, nm? Parachor,cm® ka./min™ log BB log PS Brain plasma equilibrim rate
-3.2 (brain penetration

13 29134 499 2 3 2 049 641.03 0055 054 L1 e Mo FONS activity)

22 34532 571 2 3 3 049 660.59 0055 -011 -12 3> (probablyCNSinactive
due to low brain penetration)

27 37629 547 2 6 4 098 678.43 0055 -024 13 3> (probablyCNSinactive

due to low brain penetration)

In summary, after preliminary in silico ADME screening using commercially available software, it can be
assumed that investigated compounds 13, 22, and 27 should have suitable physicochemical parameters for
adequate bioavailability in the body. Unfortunately, for the most effective of the compounds 37, probably due
to the presence of the NO; group, BBB penetration was not predicted. Of course, much more accurate results
could be obtained using other experiments [93].

Conclusions

A series of nine previously synthesized monosubstituted 2-hydroxynaphthalene-1-carboxanilides was
enriched with seventeen new di- and trisubstituted 2-hydroxynaphthalene-1-carboxanilides and all the
compounds were tested for their in vitro antibacterial and antimycobacterial activity. Only five compounds
showed antimicrobial activity, and three of them were comparable to drugs that were clinically used.
N-(3,5-Dimethylphenyl)-2-hydroxynaphthalene-1-carboxamide (13) was active only against S. aureus and
MRSA isolates, 2-hydroxy-N-[2-methyl-5-(trifluoromethyl)phenyl]lnaphthalene-1-carboxamide (22) and
2-hydroxy-N-[4-nitro-3-(trifluoromethyl)phenyl]naphthalene-1-carboxamide (27) were active across the
entire spectrum of tested bacteria/mycobacteria, both against susceptible and resistant isolates. Compound
22 was even active against Gram-negative E. coli. These active agents showed no in vitro cytotoxicity against
THP-1 cells up to a concentration of 30 uM. Based on preliminary in silico ADME screening using commercially
available software, it can be assumed that investigated compounds 13, 22 and 27 should have suitable
physicochemical parameters for adequate bioavailability in the body. From the observations, it can be stated
that the two most active compounds 22 and 27 are substituted with a CF; moiety in the meta position of the
anilide, in addition to the methyl or nitro group. The CF; moiety thus proved to be a necessary prerequisite
for antimicrobial activity in structures of this type. It was indirectly verified that the biological effects of this
scaffold are based on the Michael acceptor theory. The CF; moiety, primarily due to its electron-withdrawing
properties, meets the definition of Michael acceptors, where the overall electron deficit in the molecule
(caused by appropriate substitution) appears to be essential for the expected binding to targets in the
bacterial cell, resulting in antimicrobial activity. Given the overall structure of the investigated compounds,
multiple mechanisms of action can be assumed; efforts to discover them will subsequently be carried out
using proteomic and molecular biological experiments.

Supplementary material

'H and 13C NMR spectra of the new discussed compounds are available from the corresponding author on
request, or at https://pub.iapchem.org/ojs/index.php/admet/article/view/2642.
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