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The Appendix describes several features of pDISOL-X that potentially extend the program’s application 

reach to the high values of ionic strengths (I > 5 M). The use of the Stokes-Robinson hydration theory (SRHT) 

is briefly reviewed here. In pDISOL-X calculations, equilibrium constants are automatically compensated for 

changes in ionic strength resulting during a pH titration, using SRTH, which extends the simple Debye-Hückel 

equation to I > 0.1 M. Also, the Appendix includes sample derivations of explicit solubility-pH equations for 

two simple cases of acids and bases, and for a typical diprotic ampholyte.  

It is assumed here that a specified weight of a neutral substance (HA, B, or XH) is added to a volume of 

distilled water, at an amount enough to form a saturated solution across a wide pH range when pH is adjusted 

with a simple titrant, HCl or NaOH. Under these circumstances, the pH of the initial equilibrated solution is 

expected to be at the saturation endpoint, pHw, assuming the solution is free of ambient carbon dioxide and 

that ancillary complexation/aggregation is not an interfering factor. A simulated solubility-pH profile is 

generated as acid-base titrants are then added.  

Appendix A. Automatic ionic strength compensation  

Unless intentionally controlled, the ionic strength, I, changes during an acid-base solubility-pH titration 

due to ionizations, additions of titrant, and dilution effects. This change affects equilibrium constants. In 

many cases, uncontrolled ionic strength can vary substantially during titration. In contrast, standardized 

methods for pKa determination are typically conducted at a nearly constant Iref = 0.15 M (adjusted with KCl 

or NaCl), under conditions where low sample concentrations (e.g. 10-3 to 10-6 M) are ‘swamped’ by the added 

inert salt.  

In the ‘constant ionic medium’ model, it is a preferred practice to designate 0.15 M as the ‘reference’ ionic 

strength, Iref (‘physiological’ level), to which calculated equilibrium constants are adjusted at each pH point 

in the solubility assay calculations. There is no loss of thermodynamic rigor over the legacy practice of 

defining the reference state at zero concentration and unit activity coefficients [1] (pp. 43-47). 

Since I at any given pH point is likely different from Iref, all ionization constants need to be locally 

transformed (from reference Iref to local I) for the calculation of local point concentrations.  
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Consider a two-reactant system, based on reactants A (e.g. anion of weak acid) and H (proton), whose 

charges are Q and +1, respectively. The concentration of the jth species, Cj, is calculated in terms of these 

reactants; Eq. (A1)  

Cj = CAQEaj CH+Ehj j  (A1) 

defined by the general equilibrium Eq. (A2)  

Eaj A + Ehj H  AEaj HEhj (A2) 

where j is the ‘cumulative’ formation constant [1] (pp. 148-157), and Eaj and Ehj are the A and H 

stoichiometric coefficients, respectively, of the jth species. The core idea here is to place only the ‘bare’ 

reactants on the left side of the equilibrium expression and the product species formed on the right side. 

The (Iref) reference set of cumulative constants (i.e. those refined by regression analysis) are transformed 

to the local set (I) according to the general Eq. (A3) 
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The ionic-strength-dependent activity coefficients of A, H, and jth species are denoted fA, fH, and fj, respect-

tively. The activity coefficients are cast in an expanded equation based on the hydration theory proposed by 

Robinson and Stokes [2,3], further elaborated by Bates et al. [4] and Robinson and Bates [5] to include single-

ion activities, then slightly modified by Bockris and Reddy [6] and recently applied to solubility data of a 

druglike molecule by Wang et al., Eq. (A4) [7]: 
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The first term on the right side of Eq. (A4) is the Debye-Hückel equation accounting for the long-range ion-

ion electrostatic interactions. At 25 °C and I = 0.0, 0.15, and 1.0 M (NaCl), the respective parameters (molar 

scale) are: A = 1.825106 (εT)-3/2 = 0.512, 0.528, 0.642; ion size scaler, B = 50.29 (εT)-1/2 = 0.329, 0.333, 0.355; 

dielectric constant of water, ε = 78.3, 76.8, 67.3. T / K is the absolute temperature. The mean diameter of the 

ith hydrated ion is åi [8]. 

The second and third terms are ascribed to short-range ion-solvent interactions. The second term is 

related to the decrease in the activity of water due to the work done in immobilizing some of the bulk water 

to hydrate ions. The activity of water, aH2O = 1.000, 0.995, 0.967 [6] at the above three ionic strength values. 

The last term in Eq. A4 is related to free energy change of the ions, as their concentrations effectively increase 

when the ‘available’ volume of bulk water decreases upon hydration of the ions. The summation symbols in 

Eq. (A4) are over all charged species (including the reactants, inert salt and buffer components) under 

consideration. The concentration of pure water is CH2O = 55.51 M. The hj in the summation term is hydration 

number of the jth ion [3]. Values of hj were selected/estimated as described by Wang et al. [7]. For neutral 

molecules, it is often assumed that hj = 0. 

The activity coefficients of uncharged species can be determined by the second two terms in Eq. (A4). In 

practice, the activity coefficients are barely different from 1. As a modification to Eq. A4, in pDISOL-X, the 

activity of uncharged species (e.g. HA...H6A, B, XH) includes the contribution of the salting-out factor 

(Setschenow constant [9]), Ksalt / M-1 , the values of which were estimated empirically using Eq. (A5b) [10]. 

log fs = Ksalt(I - Iref) (A5a) 
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Ksalt = 0.090 - 0.073A - 0.064B - 0.039Sπ - 0.002E + 0.188V (A5b) 

A, B, Sπ, E and V are the five Abraham solvation descriptors: H-bond acidity, H-bond basicity, dipolarity-pola-

rizability, excess molar refractivity, and McGowan molar volume, respectively [11,12]. In the calculation of acti-

vity coefficients in pDISOL-X, all charged species are treated with the legacy SRHT Eq. (A4). However, if a neutral 

solute is considered, then Eq. (A5a) is used to calculate its activity coefficient. All solids are assigned log fs = 1. 

Appendix B. pH electrode calibration, standardization and automatic compensation  

The ‘blank’ acid-base titration method can be used, based on an empirical four parameter equation, in 

what has been called the ‘standardization’ step [13], Eq (A6).  

pH = α + kS pcH + jHCH++ jOHKw/CH+ (A6) 

where pH is the ‘operational’ pH (meter reading) and Kw is the ionization constant of water, which is a function 

of temperature and ionic strength [14]. The jH term corrects pH readings for the nonlinear pH response due 

to liquid junction and asymmetry potentials in highly acidic solutions (pH <2), while the jOH term corrects for 

high-pH nonlinear effects [1] (pp. 140-145). Typical values of the adjustable parameters at 25 °C, based on 

titration of ‘blank’ aqueous solutions containing 0.15 M KCl, are  = 0.09, kS = 1.002, jH = +0.5 and jOH = -0.5. 

However, each electrode possesses its own characteristic set, which can shift with repeated exposure to 

saturated solutions.   

In solubility-pH profiles, ionic strength may reach values exceeding 10 M. The experimentally determined 

parameters in Eq. (A6) are automatically compensated in the data analysis program, for changes in I at the 

local pH from the benchmark level of Iref = 0.15 M, according to empirically determined relationships [1] (pp. 

64-65), Eqs. (7a) to (7d): 
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Appendix C. Explicit solubility-pH equations in saturated solution  

All the equations derived below refer to aqueous solutions saturated with a neutral weak acid (HA), a 

weak base (B), or an ampholyte (XH). To keep the equations simple and relatively transparent, in the following 

sample derivations of explicit equations, activity and salting-out corrections are not applied in the derivation 

of the saturation endpoint pHw. All total reactant concentrations are taken to be less than the salt solubility, 

so only the neutral species can precipitate as excess solids. The concentrations of the neutral species are 

frequently denoted as CHA s, CB s and CXH s, to emphasize that these species are saturated in the solutions. The 

subscripts ‘s’ will not be used here, since the defined context here is unambiguous. The lowest possible 

solubility value of the neutral species is called the ‘intrinsic solubility’, denoted by the symbol S0. 

Saturated solution of monoprotic weak acid, HA, in pure water 

The equilibrium ‘model’ refers to a set of equilibrium equations and the associated equilibrium constants. 

In the case of a monoprotic weak acid, a saturated solution can be defined by the two equations and the 

corresponding constants 
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HA   H+ + A- Ka = CH+ CA- / CHA (A8a) 

HA(s)  HA S0 = CHA (A8b) 

Ka is the ionization constants of the weak acid and S0 is the intrinsic solubility of the acid. The solubility, S, 

at a particular pH is defined as the mass balance sum of the concentrations of all the A-containing 

components dissolved in the aqueous phase, Atot,aq, Eq. (A9)  

S = CHA+CA- = CHA + Ka CHA/ CH+ = S0 (1 + Ka / CH+)   (A9) 

The square brackets denote molar concentration of species. In logarithmic form, Eq. (A10) 

log S = log S0 + log (1 + 10- pKa + pH) (A10) 

Eq. A10 is called the Henderson-Hasselbalch (HH) equation for a monoprotic weak acid. The plot of log S 

vs. pH is defined by a hyperbolic curve. In the plot, the limiting slope in acidic solutions (pH << pKa) is zero 

and in alkaline solutions (pH >> pKa) is +1. pKa is indicated by the pH where the slope is +½.  

To calculate the equilibrium pHw, it is useful to start with the total hydrogen excess in aqueous solution, 

Htot,aq, expressed in terms of the equilibrium model (Eq. (A8)) and set equal to the analytical acid-base 

concentrations (CHCl, CNaOH and Atot,aq):  

Htot,aq = CH+ - COH- + CAH = CH+  - Kw/CH+ + S0 = CHCl - CNaOH + Atot,aq = CHCl - CNaOH + S0 + CA- (A11) 

On rearranging the above, noting that at endpoint pHw, CHCl = CNaOH, EQs. (12) 

CH+ - Kw/CH+ + S0 = CHCl - CNaOH + S0 + CA-  (A12a) 

CH+ - Kw/CH+ - CA- =  0 (A12b) 

CH+ - Kw/CH+ - S0Ka / CH+ = 0 (A12c) 

CH+2 = Kw + S0Ka  (A12d) 

The equilibrium pH of a saturated solution of a monoprotic weak acid is  

(CH+w)ACID = (Kw + S0 Ka)1/2 (A13) 

Saturated solution of diprotic weak acid, H2A, in pure water  

The above procedure can be extended to the case of a diprotic acid, although CH+w is no longer easily 

stated in explicit form. As such, the equation for the total hydrogen excess in aqueous solution is given by 

Eq. (A14) 

Htot,aq = CH+ - COH- + CAH- + 2 CH2A = CHCl - CNaOH + 2Atot,aq (A14) 

Eq. (A14) is then transformed by inserting the expressions for pKa1, pKa2 and S0. At the saturation endpoint, 

CHCl = CNaOH. The transformed equation is further re-arranged to the cubic formula in terms of CH+w. 

(CH+w)3 - CH+w (Kw + Ka1S0) - 2 Ka1Ka2 S0 = 0 (A15) 

The equation may be readily solved using a spreadsheet method, as described elsewhere [15]. For triprotic 

and more complicated multiprotic weak acids, the derived higher-order polynomial equations analogous to 

the above expression become unwieldy. Their exact forms appear not to have been published. Rather than 

dealing with explicit equations (e.g. Eqs. (A13), (A15), (A19), (A20), (A25)), the pDISOL-X program automati-

cally derives implicit equivalents, and readily adapts them to activity corrections. 

Saturated solution of monoprotic weak base, B, in pure water  

In the case of a monoprotic weak base, a saturated solution can be defined by Eqs. (16) 

BH+ 
 H+ + B Ka = CH+CB / CBH+ (A16a) 

B(s)  B S0 = CB (A16b) 
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The total solubility, S, at a particular pH is defined by Eq. (A17)  

S = CB + CBH+ (A17) 

The above equation can be further transformed to Eq. (A18) as noted above. 

log S = log {CB + CBCH+ / Ka } = log CB + log (1 + CH+ / Ka) = log S0 + log (1 + 10+pKa - pH) (A18) 

The above Henderson-Hasselbalch (HH) equation (A18) for a monoprotic weak acid describes a hyperbolic 

log S - pH curve, vertically mirroring that of the weak acid case. The limiting slope in acidic solutions (pH << pKa) 

is -1 and in alkaline solutions (pH >> pKa) is zero. The pKa is indicated by the pH where the slope is -½. 

Following similar steps noted for the case of a monoprotic weak acid, the corresponding explicit Eq. (A19) 

for the equilibrium pH can be derived for a monoprotic weak base as 

(CH+w)BASE = {Kw / (1 + S0 /Ka)}1/2 (A19) 

For a diprotic weak base, the corresponding explicit formula derives as the cubic Eq. (A20) 

(CH+w)3 - (CH+w)2Ka1(1 + Ka2 / S0) / 2 - Kw Ka1 Ka2 / S0 = 0 (A20) 

As noted above, the equation may be readily solved using a spreadsheet method [15]. 

Saturated solution of diprotic ampholyte, XH, in pure water 

A saturated ampholyte solution can be defined by the equations (A21) and the corresponding constants: 

XH2
+  H+ + XH Ka1 = CH+ CXH / CXH2

+ (A21a) 

XH  H+ + X- Ka2 = CH+ CX- / CXH (A21b) 

HX(s)  XH S0 = CXH  (A21c) 

The total solubility, S, at a particular pH is defined as the mass balance sum of the concentrations of all 

the species dissolved in the aqueous phase: 

S = CX- + CXH + CXH2
+ = Xtot,aq (A22) 

The above equation can be transformed into an expression containing only constants and CH+ (as the only 

variable), by substituting the above ionization and solubility Eq. (A23). 

log S = log {Ka2 CXH/CH+ + CXH+ CXHCH+ / Ka1} = log CXH + log (Ka2 / CH+ + 1 + CH+ / Ka1) = 
 =  log S0 + log (1 + 10-pKa2+pH + 10+pKa1-pH) (A23) 

The above HH equation for an ampholyte describes a U-shaped log S-pH curve. The limiting slope in acidic 

solutions is -1 and in alkaline solutions is +1. The limiting slope between the two pKa values is zero. pKa1 is 

indicated by the pH where the slope is -½; pKa2 is indicated by the pH at slope +½.  

As before, pHw can be calculated from the total hydrogen excess, Htot,aq, expressed in terms of the 

equilibrium model (Eqs. (A21)) and set equal to the analytical acid-base concentrations (CHCl, CNaOH and Xtot,aq), 

Eq. (A24):  

Htot,aq = CH+ - COH- + CXH + 2 CXH2
+ = CH+ - Kw/CH+ + S0 + 2S0CH+ / Ka1 = CHCl - CNaOH + Xtot,aq (A24) 

On rearranging the above (noting that at endpoint pHw, CHCl = CNaOH), the equilibrium pH of a saturated 

solution of a monoprotic weak acid is given by Eq. (A25)  

(CH+w)AB = {(Kw + S0 Ka2) / (1 + S0/Ka1)}1/2 (A25) 
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