ADMET & DMPK 13(1) (2025) S2626

ADMET

Open Access : ISSN : 1848-7718

http://www.pub.iapchem.org/ojs/index.php/admet/index

Supplementary material to

Often neglected steps in transforming drug solubility from single
measurement in pure water to physiologically-appropriate
solubility-pH

Alex Avdeef

in-ADME Research, New York City, NY 10128, USA

ADMET & DMPK 13(1) (2025) 2626; https://doi.org/10.5599/admet.2626

The Appendix describes several features of pDISOL-X that potentially extend the program’s application
reach to the high values of ionic strengths (/ > 5 M). The use of the Stokes-Robinson hydration theory (SRHT)
is briefly reviewed here. In pDISOL-X calculations, equilibrium constants are automatically compensated for
changes in ionic strength resulting during a pH titration, using SRTH, which extends the simple Debye-Hiickel
equation to /> 0.1 M. Also, the Appendix includes sample derivations of explicit solubility-pH equations for
two simple cases of acids and bases, and for a typical diprotic ampholyte.

It is assumed here that a specified weight of a neutral substance (HA, B, or XH) is added to a volume of
distilled water, at an amount enough to form a saturated solution across a wide pH range when pH is adjusted
with a simple titrant, HCl or NaOH. Under these circumstances, the pH of the initial equilibrated solution is
expected to be at the saturation endpoint, pHw, assuming the solution is free of ambient carbon dioxide and
that ancillary complexation/aggregation is not an interfering factor. A simulated solubility-pH profile is
generated as acid-base titrants are then added.

Appendix A. Automatic ionic strength compensation

Unless intentionally controlled, the ionic strength, I, changes during an acid-base solubility-pH titration
due to ionizations, additions of titrant, and dilution effects. This change affects equilibrium constants. In
many cases, uncontrolled ionic strength can vary substantially during titration. In contrast, standardized
methods for pK, determination are typically conducted at a nearly constant /. = 0.15 M (adjusted with KCI
or NaCl), under conditions where low sample concentrations (e.g. 103 to 10® M) are ‘swamped’ by the added
inert salt.

In the ‘constant ionic medium’ model, it is a preferred practice to designate 0.15 M as the ‘reference’ ionic
strength, I (‘physiological’ level), to which calculated equilibrium constants are adjusted at each pH point
in the solubility assay calculations. There is no loss of thermodynamic rigor over the legacy practice of
defining the reference state at zero concentration and unit activity coefficients [1] (pp. 43-47).

Since | at any given pH point is likely different from I all ionization constants need to be locally
transformed (from reference I¢to local /) for the calculation of local point concentrations.
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Consider a two-reactant system, based on reactants A (e.g. anion of weak acid) and H (proton), whose
charges are Q and +1, respectively. The concentration of the ji species, G, is calculated in terms of these
reactants; Eq. (A1)

Cj = Cad®™ st 3, (A1)
defined by the general equilibrium Eq. (A2)
Eaj A+ Ehj HS AEaj HEhj (AZ)

where £ is the ‘cumulative’ formation constant [1] (pp. 148-157), and E, and E, are the A and H
stoichiometric coefficients, respectively, of the j* species. The core idea here is to place only the ‘bare’
reactants on the left side of the equilibrium expression and the product species formed on the right side.

The A(Ief) reference set of cumulative constants (i.e. those refined by regression analysis) are transformed
to the local set f(/) according to the general Eq. (A3)

log B (1)=logB(I)+E, Iog{g}—%J+EhjlogL%J—log{%J (A3)

The ionic-strength-dependent activity coefficients of A, H, and j™ species are denoted fa, fu, and f;, respect-
tively. The activity coefficients are cast in an expanded equation based on the hydration theory proposed by
Robinson and Stokes [2,3], further elaborated by Bates et al. [4] and Robinson and Bates [5] to include single-
ion activities, then slightly modified by Bockris and Reddy [6] and recently applied to solubility data of a
druglike molecule by Wang et al., Eq. (A4) [7]:

C..+>C
\/I_ H,0 Zj,,

A
log f(I)=-Q° ———F=—h/loga, , +log (Ad)
1+Ba+1 : Coo+ D2 (1=h)C,
i

The first term on the right side of Eq. (A4) is the Debye-Hiickel equation accounting for the long-range ion-
ion electrostatic interactions. At 25 °C and / = 0.0, 0.15, and 1.0 M (NaCl), the respective parameters (molar
scale) are: A = 1.825x10° (¢T)*? = 0.512, 0.528, 0.642; ion size scaler, B = 50.29 (¢7)™/? = 0.329, 0.333, 0.355;
dielectric constant of water, € = 78.3, 76.8, 67.3. T/ K is the absolute temperature. The mean diameter of the
i hydrated ion is d; [8].

The second and third terms are ascribed to short-range ion-solvent interactions. The second term is
related to the decrease in the activity of water due to the work done in immobilizing some of the bulk water
to hydrate ions. The activity of water, au,0 = 1.000, 0.995, 0.967 [6] at the above three ionic strength values.
The last termin Eq. Ad is related to free energy change of the ions, as their concentrations effectively increase
when the ‘available’ volume of bulk water decreases upon hydration of the ions. The summation symbols in
Eg. (A4) are over all charged species (including the reactants, inert salt and buffer components) under
consideration. The concentration of pure water is Cy,0 = 55.51 M. The h; in the summation term is hydration
number of the j" ion [3]. Values of h; were selected/estimated as described by Wang et al. [7]. For neutral
molecules, it is often assumed that h; = 0.

The activity coefficients of uncharged species can be determined by the second two terms in Eq. (A4). In
practice, the activity coefficients are barely different from 1. As a modification to Eq. A4, in pDISOL-X, the
activity of uncharged species (e.g. HA...H¢A, B, XH) includes the contribution of the salting-out factor
(Setschenow constant [9]), Ksar / Mt the values of which were estimated empirically using Eq. (A5b) [10].

Iogfs = Ksalt(l - Iref) (A5a)
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Ksait = 0.090 - 0.073A - 0.064B - 0.039S: - 0.002E + 0.188V  (A5b)

A, B, S, E and V are the five Abraham solvation descriptors: H-bond acidity, H-bond basicity, dipolarity-pola-
rizability, excess molar refractivity, and McGowan molar volume, respectively [11,12]. In the calculation of acti-
vity coefficients in pDISOL-X, all charged species are treated with the legacy SRHT Eq. (A4). However, if a neutral
solute is considered, then Eq. (A5a) is used to calculate its activity coefficient. All solids are assigned log f; = 1.

Appendix B. pH electrode calibration, standardization and automatic compensation

The ‘blank’ acid-base titration method can be used, based on an empirical four parameter equation, in
what has been called the ‘standardization’ step [13], Eq (A6).

pH = a + ks pcH + juCu++ jonKw/Cu+ (A6)

where pH is the ‘operational’ pH (meter reading) and K, is the ionization constant of water, which is a function
of temperature and ionic strength [14]. The ju term corrects pH readings for the nonlinear pH response due
to liquid junction and asymmetry potentials in highly acidic solutions (pH <2), while the jon term corrects for
high-pH nonlinear effects [1] (pp. 140-145). Typical values of the adjustable parameters at 25 °C, based on
titration of ‘blank’ aqueous solutions containing 0.15 M KCl, are oz =0.09, ks=1.002, ju = +0.5 and jon = -0.5.
However, each electrode possesses its own characteristic set, which can shift with repeated exposure to
saturated solutions.

In solubility-pH profiles, ionic strength may reach values exceeding 10 M. The experimentally determined
parameters in Eq. (A6) are automatically compensated in the data analysis program, for changes in I at the
local pH from the benchmark level of I..s = 0.15 M, according to empirically determined relationships [1] (pp.
64-65), Egs. (7a) to (7d):

N

a =0.059 +0.085 (A7a)
@+
|
k.=0.995+0.032 \/- -0.57/ (A7b)
1++/1/
j,=0.80—2.0/ (A7c)
j,,=—0.59+0.6/ (A7d)

Appendix C. Explicit solubility-pH equations in saturated solution

All the equations derived below refer to aqueous solutions saturated with a neutral weak acid (HA), a
weak base (B), or an ampholyte (XH). To keep the equations simple and relatively transparent, in the following
sample derivations of explicit equations, activity and salting-out corrections are not applied in the derivation
of the saturation endpoint pHy. All total reactant concentrations are taken to be less than the salt solubility,
so only the neutral species can precipitate as excess solids. The concentrations of the neutral species are
frequently denoted as Cuas, Css and Cxus, to emphasize that these species are saturated in the solutions. The
subscripts ‘s’ will not be used here, since the defined context here is unambiguous. The lowest possible
solubility value of the neutral species is called the ‘intrinsic solubility’, denoted by the symbol So.

Saturated solution of monoprotic weak acid, HA, in pure water

The equilibrium ‘model’ refers to a set of equilibrium equations and the associated equilibrium constants.
In the case of a monoprotic weak acid, a saturated solution can be defined by the two equations and the
corresponding constants
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HAS H' +A Ka = C+Ca- / Chia (A8a)

HA(s) S HA So = Cha (A8b)

K, is the ionization constants of the weak acid and S is the intrinsic solubility of the acid. The solubility, S,
at a particular pH is defined as the mass balance sum of the concentrations of all the A-containing
components dissolved in the aqueous phase, Atotaq, EQ. (A9)

S = Cup+Ca- = Cua + Ka Cua/ Cu+=So (1 + Ka / Ci#) (A9)

The square brackets denote molar concentration of species. In logarithmic form, Eq. (A10)

log S =log So + log (1 + 10~ Pka+PH) (A10)

Eg. A10 is called the Henderson-Hasselbalch (HH) equation for a monoprotic weak acid. The plot of log S
vs. pH is defined by a hyperbolic curve. In the plot, the limiting slope in acidic solutions (pH << pKa) is zero
and in alkaline solutions (pH >> pK,) is +1. pK; is indicated by the pH where the slope is +}5.

To calculate the equilibrium pH,, it is useful to start with the total hydrogen excess in aqueous solution,
Htot,aq, €Xpressed in terms of the equilibrium model (Eq. (A8)) and set equal to the analytical acid-base
concentrations (Cuci, Cnaon and Aiotaq):

Htotaq = Ch* - Com- + Can = C+ - Kw/Ch+ + So = Chcl - CnaoH + Atot,ag = CHal - CnaoH + So + Ca- (A11)

On rearranging the above, noting that at endpoint pHw, Cuc = Cnaon, EQs. (12)

Ch+ - Kw/Ch+ + So = Ccl - CnaoH + So + Ca (A12a)
Ci- Ku/Cu+-Ca= 0 (A12b)
Ch+ - Kw/Ch+- SoKa / Cu+=0 (A12c)
Cu? = Ku + SoKa (A12d)

The equilibrium pH of a saturated solution of a monoprotic weak acid is

(CH+W)ACID = (Kw + So Ka)l/2 (A13)
Saturated solution of diprotic weak acid, HA, in pure water

The above procedure can be extended to the case of a diprotic acid, although Ci+ is no longer easily
stated in explicit form. As such, the equation for the total hydrogen excess in aqueous solution is given by
Eq. (A14)

Htot,aq = Cht - Con- + Can- + 2 Chza = Chcl - Cnao + 2Atot,aq (A14)

Eqg. (A14)is then transformed by inserting the expressions for pKa1, pKaz and So. At the saturation endpoint,
Chc = Cnaon. The transformed equation is further re-arranged to the cubic formula in terms of Cy.

(Crw)? - Crrw (Kw + Ka150) - 2 Ka1Kaz2 So = 0 (A15)

The equation may be readily solved using a spreadsheet method, as described elsewhere [15]. For triprotic
and more complicated multiprotic weak acids, the derived higher-order polynomial equations analogous to
the above expression become unwieldy. Their exact forms appear not to have been published. Rather than

dealing with explicit equations (e.g. Egs. (A13), (A15), (A19), (A20), (A25)), the pDISOL-X program automati-
cally derives implicit equivalents, and readily adapts them to activity corrections.

Saturated solution of monoprotic weak base, B, in pure water
In the case of a monoprotic weak base, a saturated solution can be defined by Egs. (16)

BH*S H*+B Ka = CH+CB/ CBH+ (A16a)
B(s) 5B So=0Cs (Al6b)
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The total solubility, S, at a particular pH is defined by Eq. (A17)

S=0Cg+ Cput (A17)
The above equation can be further transformed to Eq. (A18) as noted above.

log S = log {Cs + CaCu+/ K2} = log Cs + log (1 + G+ / Ka) = log So + log (1 + 10*Pka-PH) (A18)

The above Henderson-Hasselbalch (HH) equation (A18) for a monoprotic weak acid describes a hyperbolic
log S - pH curve, vertically mirroring that of the weak acid case. The limiting slope in acidic solutions (pH << pKa)
is -1 and in alkaline solutions (pH >> pKa) is zero. The pKi is indicated by the pH where the slope is -%.

Following similar steps noted for the case of a monoprotic weak acid, the corresponding explicit Eq. (A19)
for the equilibrium pH can be derived for a monoprotic weak base as

(Crrw)®ASE = {Kw / (1 + So /Ka)}2 (A19)
For a diprotic weak base, the corresponding explicit formula derives as the cubic Eq. (A20)

(CH+W)3 - (CH*w)ZKal(l + KaZ / SO) / 2 - Kw Kal KaZ / SO =0 (AZO)

As noted above, the equation may be readily solved using a spreadsheet method [15].

Saturated solution of diprotic ampholyte, XH, in pure water

A saturated ampholyte solution can be defined by the equations (A21) and the corresponding constants:

XH2* S H* + XH Ka1 = Cu+ Cx / Gy (A21a)
XHS H"+ X Ka2 = Cu+ Cx- / Cxn (A21b)
HX(s) S XH So = Cx (A21c)

The total solubility, S, at a particular pH is defined as the mass balance sum of the concentrations of all
the species dissolved in the aqueous phase:

S = Cx + Cxn + Cxn,* = Xtot,aq (A22)

The above equation can be transformed into an expression containing only constants and Cy+ (as the only
variable), by substituting the above ionization and solubility Eq. (A23).
log S = log {Ka2 Cxn/Ch+ + Cxrit+ CxuiCr+ / Ka1} = log Cxn + log (Kaz / Cut + 1 + Cu+ / Kaz) =
= log So + log (1 + 10PKe2#PH 1 7 Q*PKa1-pH) (A23)
The above HH equation for an ampholyte describes a U-shaped log S-pH curve. The limiting slope in acidic
solutions is -1 and in alkaline solutions is +1. The limiting slope between the two pK; values is zero. pKa is
indicated by the pH where the slope is -%; pKa: is indicated by the pH at slope +5.

As before, pHw can be calculated from the total hydrogen excess, Hiotaq, €xpressed in terms of the
equilibrium model (Egs. (A21)) and set equal to the analytical acid-base concentrations (Cici, Cnaon and Xiot,aq),
Eq. (A24):

Hrotag = Ch* - Con + Cxu + 2 Cxn,* = Cuv - Kw/Cir + So + 250Ch* / Ka1 = Cici - CaoH + Xtotaq  (A24)

On rearranging the above (noting that at endpoint pHw, Chci = Cnaon), the equilibrium pH of a saturated
solution of a monoprotic weak acid is given by Eq. (A25)

(Crrw)™® = {(Kw + So Kaz) / (1 + So/Ka1)}/? (A25)

References

[1] A. Avdeef. Absorption and Drug Development, 2™ Ed., Wiley-Interscience, Hoboken NJ, 2012. ISBN
978-1-118-05745-2. https://doi.org/10.1002/9781118286067

S5


https://doi.org/10.1002/9781118286067

Supplementary material ADMET & DMPK 13(1) (2025) 52626

(2]

3]

(4]

(5]

(6]

[7]

(8]

[9]

(10]

(11]

[12]

(13]

(14]

[15]

R.H. Stokes, R.A. Robinson. Journal of the American Chemical Society 70 (1948) 1870-1878.
https://doi.org/10.1021/ja01185a065

R.A. Robinson, R.H. Stokes. Electrolytic Solutions. 2" Rev. Ed. Dover Publications, Inc., Mineola, NY.
2002, pp. 18-19. https://easypdfs.cloud/downloads/4879156-electrolyte-solutions-robinson-stokes

R.G. Bates, B.R. Staples, R.A. Robinson. lonic hydration and single ion activities in unassociated chlorides
at high ionic strengths. Analytical Chemistry 42 (1970) 867-871. https://doi.org/10.1021/ac60290a006

R.A. Robinson, R.G. Bates. lonic activity coefficients in aqueous mixtures of NaCl and MgCl,. Marine
Chemistry 6 (1978) 327-333. https://doi.org/10.1016/0304-4203(78)90013-0

J.0’.M. Bockris, A.K.N. Reddy. Modern Electrochemistry, Vol. 1. Plenum Publishing Corp., New
York, NY, 1973. https://doi.org/10.1007/b114546

Z. Wang, L.S. Burrell, W.J. Lambert. Solubility of E2050 at various pH: a case in which apparent
solubility is affected by the amount of excess solid. Journal of Pharmaceutical Sciences 91 (2002)
1445-1455. https://doi.org/10.1002/jps.10107

J. Kielland. Individual activity coefficients of ions in aqueous solutions. Journal of the American Chemical
Society 59 (1937) 1675-1678. https://doi.org/10.1021/ja01288a032.

N. Ni, S.H. Yalkowsky. Prediction of Setschenow constants. International Journal of Pharmaceutics 254
(2003) 167-172. https://doi.org/10.1016/S0378-5173(03)00008-5

A. Avdeef. Anomalous salting-out, self-association and pK, effects in the practically-insoluble
bromothymol blue. ADMET & DMPK 11 (2023) 419-432. https://doi.org/10.5599/admet.1822

M.H. Abraham, J. Le. The correlation and prediction of the solubility of compounds in water using an
amended solvation energy relationship. Journal of Pharmaceutical Sciences 88 (1999) 868-880.
https://doi.org/10.1021/js9901007

J.A. Platts, D. Butina, M.H. Abraham, A. Hersey. Estimation of molecular linear free energy relation
descriptors using a group contribution approach. Journal of Chemical Information and Computer
Sciences 39 (1999) 835-845. https://doi.org/10.1021/ci980339t

A. Avdeef, J.J. Bucher. Accurate measurements of the concentration of hydrogen ions with a glass
electrode: calibrations using the Prideaux and other universal buffer solutions and a computer-
controlled automatic titrator. Analytical Chemistry 50 (1978) 2137-2142.
https://doi.org/10.1021/ac50036a045

F.H. Sweeton, R.E. Mesmer, C.F. Baes, Jr. Acidity measurements at elevated temperatures. VII.
Dissociation of water. Journal of Solution Chemistry 3 (1974) 191-214.
https://doi.org/10.1007/BF00645633.

A. Avdeef, K. Sugano. Salt solubility and disproportionation - uses and limitations of equations for
pHmax and the in-silico prediction of pHmax. Journal of Pharmaceutical Sciences 111 (2022) 225-246.
https://doi.org/10.1016/j.xphs.2021.11.017

S6

(co) X


https://doi.org/10.1021/ja01185a065
https://easypdfs.cloud/downloads/4879156-electrolyte-solutions-robinson-stokes
https://doi.org/10.1021/ac60290a006
https://doi.org/10.1016/0304-4203(78)90013-0
https://doi.org/10.1007/b114546
https://doi.org/10.1002/jps.10107
https://doi.org/10.1021/ja01288a032
https://doi.org/10.1016/S0378-5173(03)00008-5
https://doi.org/10.5599/admet.1822
https://doi.org/10.1021/js9901007
https://doi.org/10.1021/ci980339t
https://doi.org/10.1021/ac50036a045
https://doi.org/10.1007/BF00645633
https://doi.org/10.1016/j.xphs.2021.11.017

