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Abstract 

Background and purpose: Many studies have been performed to identify new sources, their optimal 
isolation, and the biological activities of flavonoids due to nutraceutical, pharmaceutical, and cosmeceutical 
properties. Experimental approach: This review describes the method for flavonoid isolation and 
characteristic from the Clerodendrum genus and their biological activities with the indication of the most 
active ones.  To perform a comprehensive review, a thorough literature review using Google Scholar, Scopus, 
and Science Direct was performed with keyword alone or in combination with other words. Key results: The 
isolation and identification of flavonoids from the Clerodendrum genus have revealed a variety of 
compounds using various methods. Various studies conducted in vivo, in vitro and in silico also reported 
bioactivities of these flavonoids. Conclusion: Several factors determine the flavonoid content in the 
Clerodendrum genus, among others, the different parts of the plant, extraction techniques, and solvent 
combination used.  Isolated flavonoids also show significant biological activities, such as antioxidant, anti-
inflammatory, antimicrobials, antidiabetic, anticancer, anti-tyrosinase, and neuroprotective agents. 

©2024 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

Clerodendrum genus has been used as ornaments in celebration and traditional medicine in India, China, 

Korea, Japan, Thailand, Indonesia, and Africa [1,2]. Linnaeus was the first to identify Clerodendrum genus and 

later named it Clerodendrum informatum in 1753 in India. At first, the genus was put into Family Verbenaceae 

and later after a phylogenetic analysis through molecular data, it was included in Family Lamiaceae in 

1990 [3,4]. The word Clerodendrum itself comes from Greek ‘kleros’ (destiny) and ‘dendron’ (tree), which 

might relate to two definitions of the use of species of the genus at that time; some of the species are believed 

to have curing properties, and others have toxic properties [5].  

Clerodendrum genus has at least 500 species and grows in tropical and warm regions of Africa, eastern and 

southern Asia, and also in America and the northern part of Australia [6]. They are evergreen shrubs, lianas, 
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small and woody vines [7]. The members of the Clerodendrum genus have been reported for traditional 

medicines, for example, Clerodendrum trichotomum for rheumatic and headaches [8], Clerodendrum serratum 

for asthma and malaria [9] and inflammation [10], Clerodendrum inerme for hepatitis and antidote [11], Clero-

dendrum colebrookianum for hypertension [12] and Clerodendrum philippinum for anti-diabetic [13]. Based on 

these therapeutic properties, Clerodendrum members have been studied for more than decades, resulting in 

extraction, isolation, purification, and identification of some compounds, including flavonoids and their 

glycosides, terpenoids, phenylethanoid glycosides, steroids and their derivates, cyclo-hexyl ethanoic and 

cyanogenic glycosides [14]. There are more than 300 compounds have been isolated and identification from 

the Clerodendrum genus, where pharmacological studies indicate that the crude extract and several monomers 

have various biological activities such as antioxidants, antidiabetic, anti-inflammatory, anticancer, antimicrobe, 

antihypertension, anti-obesity, antidiarrhea, liver protection, improving memories and neuroprotective [15].  

Flavonoids are a group of secondary metabolites abundant in plants and represent the third largest group 

of natural products after alkaloids and terpenoids [16]. Flavonoids have a polyphenolic structure and are pro-

duced for plant growth and defines mechanisms [17] by acting as attractants for pollinators, sunscreen to pro-

tect against solar radiation, antimicrobial and antiherbivore [18]. The basic structure of flavonoids is C6-C3-C6, 

where two aromatic rings, A and B, are connected by a unit of three carbon atoms [19]. Flavonoids are classified 

based on the connection model of ring A and ring B, the position of ring B connection, the oxidation level of ring 

C substructure and the degree of polymerization, where the main structure is as in Figure 1 [20]. Variations in 

the structure of these flavonoids produce several biological activities that are important for medicine [21].  
 

    
1 2 3 4 
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13 14 15 

Figure 1. Main structure of flavonoid: flavone (1), flavonol (2), flavonone (3), flavanonol (4), isoflavone (5), 
chalcone (6), dihydrochalcone (7), anthocyanidin (8), aurone (9), isoflavanone (10), rotenoid (11), 

pterocarpan (12), homoisoflavanone (13), xanthone (14) and neoflavonoid (15). 

Research shows that flavonoids have nutraceutical, pharmaceutical, medicinal and cosmetic functions due 

to their ability to act as antioxidants, anti-inflammatory, antimutant and anticarcinogenic [22]. At the cellular 

level, they combine to modulate key cellular enzyme functions [23]. The flavonoid content in Clerodendrum 

genus has been reported in several studies with varying bioactivities [24,25]. Therefore, this review examines 

the members of the Clerodendrum genus and their flavonoid presence, highlighting their isolated methods 
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and their biological potential in the area of the most often studied activities, such as antioxidant, antidiabetic, 

anti-inflammatory, antitumor, and others. 

Isolation and characterization of flavonoids from Clerodendrum genus 

Based on flavonoids potential for human health, several techniques and conditions for the isolation of this 

compounds have been implemented [26]. The common procedure for the isolation process involves plant 

preparation, extraction and fractionation, and purification [27]. The type of solvent and its polarity, solvent 

combination, and the ratio of liquid-solid have a significant impact on the process [28]. Various solvents, 

methods and parts of the plants used for isolation from the Clerodendrum genus are given in Tables 1-6, 

based on the Clerodendrum species.  

Clerodendrum paniculatum Linn 

Traditionally, Clerodendrum paniculatum Linn (pagoda flower) has been used for medicine in many Asian 

and African countries, especially for the treatment of fever, asthma, hypertension, rheumatic, microorganism 

infection, leprosy and tumours [29]. Leena and Aleykutty [30] isolated quercetin (3,3’,4’,5,7- pentahydroxy 

flavone) from the roots of this plant, while Koppilakal et al. [31] isolated it from the flower (Table 1) and 

reported antioxidant activity and hepatoprotective effects of the flower in white male rats induced with CCl4. 

Using LC-MS/MS, Pertiwi et al. [32]reported the presence of several flavonoids in the ethyl acetate extract. 

These flavonoids include apigenin, apigenin 7-O-glucuronide, 6-O-methylscutellarin, apigetrin (7-(β-D-gluco-

pyranosyloxy)-4′,5-dihydroxyflavone), 4-Coumaric acid, 7-Hydroxycoumarine and scutellarin. They also 

reported the strong antibacterial activity of the plant leaf extract.  

Table 1. Flavonoid Isolated from Clerodendrum paniculatum Linn 

Material Solvent and Extraction Method 
Isolated 

flavonoid 
Activity Ref. 

Roots 
Maceration with ethanol; fractination, and ethyl acetate fraction was 

subject to column chromatography with DCM:MeOH = 7.5:2.5 
Quercetin - [30] 

Flower Maceration with alcohol, no available data for CC solvent Quercetin 
Antioxidant 

Hepatoprotective 
[31] 

Leaves 
Maceration with n-hexane, fractionation with ethyl acetate  

and ethanol 
Apigenin 

scutellarin 
Antibacterial [32] 

 

Research on Clerodendrum paniculatum Linn has elicited a wide range of biological activities. Hafiz et 

al. [33] reported the antioxidant (IC50 value of 27.73376 μg/ml) and anti-inflammation (50 mg/kg BW) 

activities of leaves ethanol extract on white male rats, while Hedge et al. reported the antioxidant activity 

from methanol extract and the antidiabetic activity through inhibition of α-amylase enzyme [34]. The 

antidiabetic activity was also reported of the chloroform extract, with an IC50 value of 158.396 μg/ml for α-

amylase inhibition test and an IC50 value of 113.122 μg/ml for the α-glucosidase inhibition test [35]. The in 

vivo test on diabetic-induced rats in this research found a significant decrease in blood glucose, while the ex 

vivo tests using the rat hemidiaphragm isolation method showed a significant glucose uptake value. The 

flower ethanol extract was also reported for the capability to reduce blood glucose, improve lipid metabolism 

and body weight in diabetic-induced rats [36].  

The anti-anxiety activity in female albino mice (Wistar strain) was reported by Priyanka [37] from the ethyl 

acetate extract of the stems. This activity was associated with the flavonoid content, which modulates or 

inhibits gamma-aminobutyric acid (GABA) in the nervous system. Furthermore, a study by Sundaraganapathy 

et al. [38] on male Swiss white mice injected with Dalton's Lymphoma ascites (DAL) cancer cells showed 

anticancer activity from the root extract. 
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Clerodendrum inerme 

Clerodendrum inerme is known by the local names Melati laut (sea jasmine), lamburung meit, gambir laut 

(sea gambir) and genje in Indonesia, and is widespread in South China, India, Southeast Asia and North Asia. 

Traditionally, this plant is widely used to treat rheumatic pain, skin diseases, venereal diseases, wounds, fever, 

cough, dysentery and more [39]. Isolation carried out on this plant found a number of flavonoids such as 

hispidulin [40], apigenin, salvigenin and acacetin [41] and 5-hydroxy-6,7,40-trimethoxyflavone [42] with anti-

depression, antioxidant and anti-inflammatory activity (Table 2). Huang et al. [40] reported that the isolated 

compound can alleviate methamphetamine-induced hyperlocomotion, thus preventing hyperdopaminergic 

disorders, while Ibrahim et al.[41], using formalin-induced rats, reported the antioxidant and anti-inflammatory 

activities due to the possibility of the isolated flavonoid modifying free radicals and reactive nitrogen species, 

and inhibiting prostaglandin synthase enzyme.  

Table 2. Flavonoid Isolated from Clerodendrum inerme  

Material Solvent and extraction method Isolated flavonoid Activity Ref. 

Leaves 

Extraction with 95 % ethanol, partition with hexane, 
chloroform and butanol. CC with silica gel for 

chloroform using MeOH/CH2Cl from 0 %, 1 %, 2 %, 
10 % to get 9 fractions; a crystal of fraction 7 is the 

subject for NMR compound identification 

Hispidulin 
Preventing 

hyperdopaminergic 
activity 

[40] 

Leaves and 
stems 

Maceration with ethanol, fractionation,  
CC for ethyl-acetate with chloroform = 25:75 weight 

ratio 

Apigenin, 
Salvigenin, acacetin 

- [41] 

Leaves and 
stems 

VLC n-hexane: ethyl-acetate, CC with n-hexane: 
ethyl-acetate 

5-hydroxy-6,7, 
40-trimethoxyflavone 

Antioxidant, 
anti-inflammatory 

[42] 

 

Yankanchi and Koli [43] reported the anti-inflammatory activity of methanol extract of C. inerme leaves 

against male white rats induced with acetic acid. Research by Nindatu et al. [44] showed a decrease in malaria 

parasite density in patients but did not cause toxic effects on the liver and kidneys as indicated by unchanged 

levels of SGOT, SGPT, urea and creatinine. Toxicity tests by Khan et al. [45] also showed non-toxic properties 

with high antioxidant activity. Fan et al. [46] reported that the use of juice from the leaves of the plant was able 

to relieve intractable motor tic disorder in a 13-year-old Tourette syndrome (TS) patient without causing side 

effects. In vivo tests on white male mice that were injected with methamphetamine and NMDA channel 

blockers to mimic TS showed that Clerodendrum inerme leaf extract was able to suppress hyperlocomotion and 

inhibit pre-pulse inhibition (PPI), a condition also experienced by people with psychiatric disorders such as 

schizophrenia, attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder - OCD [47].  

Clerodendrum phlomidis 

Clerodendrum phlomidis is included in the traditional Ayurvedic, Unani and Siddha medicinal systems in India 

both as a single drug and in combination with other plants [48]. Ethnomedicinally, this plant is used to treat 

syphilis and gonorrhea, as well as children affected by measles [49], rheumatism [50], digestive disorders, 

acidity, gas diarrhea, liver tonic and ingredients for many pain relief massage oils [51]. Isolation carried out on 

the leaves of this plant showed the presence of pectolinaringenin and proposed the compound as a natural 

mosquito larvicidal agent due to its effectiveness in reducing two mosquito larvae, Culex quinquefasciatus Say 

and Aedes aegypti L [52]. Pectolinaringenin was also isolated by Bharitkar et al.[53], along with two new 

flavonoid glycosides (Table 3). The antibacterial activities of Clerodendrum phlomidis were reported by Yadav 

et al.[54], using the BACTEC radiometric susceptibility assay against Mycobacterium tuberculosis H37Rv (ATCC 

27294), and Vaghasiya and Chanda [55] using the agar disc diffusion method for Staphylococcus epidermidis 

inhibition. Research by Dhanabal et al. [56] using alloxan-induced diabetic rats shows the hypoglycemic and 
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hypolipidemic activities of leaf ethanol extracts, while Chidrawar et al. [57]reported the anti-obesity activity of 

root methanol extract by reducing the level of circulating lipid and adipocyte diameter, resulting in the decrease 

of body weight in C57BL/6J rats. The antiarthritic activity of the plant leaves was reported by Patel et al. 

[58]using Freund’s complete adjuvant (FCA)-induced rats. Research on this plant also reports the immune-

modulatory activity [59], neuroprotective agent [60], and antidiarrheal activity [61].  

Table 3. Flavonoid isolated from Clerodendrum phlomidis leaves 

Material Solvent and Extraction Method Isolated flavonoid Activity Ref. 

Leaves 

Fractionation with chloroform, hexane and ethyl acetate; 
chloroform extract was subject to column chromatography with 
hexane-ethyl acetate as eluent; found 12 fraction, fraction 5 was 

subject to re-column with combination of chloroform: ethyl 
acetate = 9:1. The final fraction was subject to HPLC and NMR 

checked. 

Pectolinaringenin 

Natural 
mosquito 
larvicidal 

agent 

[52] 

Leaves 

Defatted by PE; extracted with methanol; partition in butanol. 
The butanol extract was subject for CC with chloroform: 

methanol; the flavonoid fraction was re-column using the same 
solvent; and found the compound in combination of 85:15 % and 

80:20 %, chloroform: methanol 

Pectolinaringenin 
unnamed flavonoid  

1 and 2 
- [53] 

Clerodendrum petasites 

Clerodendrum petasites (English name: one root plant) is widespread in Thailand, Vietnam, China, India, 

Malaysia and Sri Lanka [62]. In Thailand, this plant is included in the traditional medicine mixture "Ben-Cha-Lo-Ka-

Wi-Chian Remedy" as an antipyretic [63], antiasthma and anti-inflammatory [64]. The isolation of Clerodendrum 

petasites identifies a number of flavonoids and reports various bioactivities (Table 4). Hazekamp et al. [65] isolated 

hispidulin from the aerial part and reported the relaxing effect on the tracheal smooth muscle of guinea pigs from 

the plant ethanol extract. This relaxing effect is also reported by Hasriadi et al. [66] through the nociceptive pain 

test, where the administration of the extract to experimental mice was able to alleviate pain-like behaviours, such 

as thermal nociceptive pain, abdominal constriction, neurogenic, and inflammatory pain.  

Table 4. Flavonoid Isolated from Clerodendrum petasites  

Material Solvent and extraction method 
Isolated 

flavonoid 
Activity Ref. 

Aerial 

Maceration with 96 % ethanol, separated in ethyl-acetate : 
methanol : water (43:22:35), subsequent fraction by centrifugal 
partition chromatography (CPC) using chloroform : methanol : n-
propanol : water (45:60:10:40). Fraction than subject to TLC 
using ethyl-acetate : formic acid : acetic acid : water 
(100:11:11:27) Active fraction was then subject to NMR 

Hispidulin 
Treatment for 

asthma 
[65] 

Root 
Maceration with 80 % ethanol, partitioned with water, ethyl 
acetate and dichloromethane then determined by HPLC 

Hispidulin 
Hesperetin 
Hesperidin 

Inhibits  
SARS-CoV-2 

spike protein 
[67] 

Leaves 
stem, root 

Extracted with methanol and subjected to HPLC with the 
combination of acetonitrile and acetic acid for the mobile phase 

Quercetin 
Hispidulin 

Anti- 
inflammatory 

[68] 

Aerial parts 

Maceration with 80 % ethanol, partitioned with water, butanol, 
ethyl acetate and petroleum ether; the ethyl acetate and butanol 
fractions are subject to column chromatography and examined 
by NMR 

Hispidulin 
Apigenin 
Luteolin 
Nepetin 

Skin treatment [69] 

 

Using the root ethyl acetate extract, Asjri et al. [67] isolated three flavonoids: hispidulin, hesperetin, and 

hesperidin. The research also tested for chronic inflammation using A549 lung cells and found that the ethyl 

acetate extract and hesperetin can significantly inhibit the Spike S1-induced inflammatory gene expressions 

(NLRP3, IL-1b, and IL-1). They proposed the use of Clerodendrum petasites extract and hesperetin in the 
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development of supportive therapies for the prevention of COVID-19-related chronic inflammation. Kwuansa-

wat et al. [68] isolated quercetin and hispidulin from leaves, stems and roots and reported the anti-inflam-

matory activities of the methanol extracts by in vitro testing using RAW 264.7 cells. The anti-inflammatory 

activities were also reported by Panthong et al. [70] using ear edema rats induced by ethyl phenylpropiolate.  

Isolation conducted by Thitilertdecha et al. [69] on aerial parts identified a number of flavonoid aglycones, 

including nepetin, luteolin, apigenin, naringenin, hispidulin, hesperetin, and chrysin. Using a pig skin model, 

the research shows that hispidulin and nepetin were able to penetrate the skin, making skin treatments 

possible. An in vivo test of lotions and creams with a mixture of C. petasites extract showed that hispidulin 

and nepetin were mostly absorbed by the stratum corneum 6 hours after being applied to human skin [71].  

Clerodendrum volubile 

Clerodendrum volubile, known as a white butterfly, is a shrub-like climber native to Africa, widely 

distributed in warm temperate and tropical regions of the world, and is used for ornament, as a food 

ingredient, and in traditional medicine [72]. The plant has long been used traditionally to treat arthritis, 

diabetes, dropsy, gout rheumatism, swellings, oedema, as an analgesic, pregnancy tonic, anti-abortifacients, 

and sedatives [73]. Table 5 summarizes the plant parts, extraction methods, flavonoids, and their bioactivities 

isolated from C. volubile.  

Table 5. Flavonoid Isolated from Clerodendrum volubile  

Material Solvent and extraction method Isolated flavonoid Activity Ref. 

Leaves 
Methanol extract was partition with n-hexane, DCM,  

ethyl-acetate and butanol. 
DCM fraction was subject to CC with n-hexane : DCM (92.5:7.5) 

Pectolinaringenin 
Antioxidant, 

anti-inflammatory 
[74] 

Erukainure et al. [74] isolated pectolinarigenin for the first time from the leaf extract. The research also 

shows that the DCM fraction of Clerodendrum volubile shows potent immunomodulatory activity by 

inhibiting T-cell proliferation and modulating respiratory oxidative burst in phagocytes. A study by Ugbaja et 

al. [75]on rats induced with arsenic shows the hepato-reno protective effects of leaf extract through reducing 

oxidative stress and increasing antioxidant molecules/enzymes, singly or combined. 

Clerodendrum volubile has been reported for its antiproliferative activity. Erukainure et al. [76] reported 

the antiproliferative activity of fatty acids from leaves against MCF-7 human breast cancer cell lines. The fatty 

acids considerably inhibited cell growth, arrested G0/G1 phase by down-regulating the gene expression 

(MMP-9) and mitigated oxidative stress in MCF-7 cell lines. Another study by Erukainure et al. [77] on the 

antiproliferative effect of the dichloromethane leaf extract revealed that the extract exhibited cytotoxic 

effects against human embryonic kidney (HEK293) cells. A concurrent increase in proinflammatory 

biomarkers, reduction of antioxidative biomarkers, and ATP depletion led to cell apoptosis. Saheed et al. [78] 

also reported an antiproliferative effect from the leaf methanol extract against prostate cancer (PCa) cells. 

The extract was able to suppress the clonogenic potential of PCa cells in a colony and 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays. An increase in the levels of cyclin-dependent kinase 

inhibitor p21 signified the modulation of the cell cycle machinery, while a concentration-dependent cleavage 

of Poly (ADP-ribose) polymerase (PARP) and Caspase 3 was observed through the western blot analysis of 

the extract-treated cells. 

The antioxidant potential of Clerodendrum volubile has been reported by many studies. Ogunwa et al. [79] 

reported the aqueous extract using metal chelating, reducing power, 2, 2′-azino-bis (3-ethylbenthiazoline-6-

sulphonic acid (ABTS), DPPH, superoxide anion and hydrogen peroxide scavenging assays and showed very 

good antioxidant activity in all the tested assays. Adefegha and Oboh [80] reported a similar effect of the 
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aqueous extract with standard antioxidants such as ascorbic acid, trolox and EDTA, by using iron chelating, 
DPPH radical, superoxide ion, hydrogen peroxide, ABTS radical, hydroxyl radical scavenging activities and 
ferric ion reducing properties assays.  

Clerodendrum glandulosum  

Clerodendrum glandulosum (India's traditional name: glory bower) has been known for its use in “Ayurvedic 
Medicine”, one of the oldest medical systems from India [81]. People from the northeast region of India use 
the dried leaves of this species as a traditional remedy for obesity, hypertension and diabetes [82]. Deb et al. 
[83] identified scuttelarin, luteolin and apigenin from the leaf of this plant (Table 6). The research also reported 
the antioxidant activity using DPPH, ABTS, FRAP, phospho-molybdenum reduction, and SOD assay, and the 
inhibition activity of metabolic enzymes, such as α-glucosidase, α-amylase, pancreatic lipase, xanthine oxidase, 
and angiotensin-converting enzyme. Using a polyphenol-rich fraction for extraction, Kound et al. [84] isolated 
apigenin and reported the potency of antioxidant (IC50 of DPPH = 32.45 μg/mL; ABTS = 39.08 μg/mL) and 
antidiabetic (IC50 = 2.18 μg/mL for aldose reductase inhibition) properties from the fraction. The in vivo test 
shows the reduction in blood glucose levels and increase in plasma insulin in a diabetic rat model, and the in 
silico test shows the interaction of hydrogen bond between apigenin and amino acid residues of -amylase,  

-glucosidase, and aldose reductase enzymes.  

Table 6. Flavonoid isolated from Clerodendrum glandulosum leaves 
Material Solvent and Extraction Method Isolated flavonoid Activity Ref. 

Leaves Maceration with methanol 95 %; the extract was then 
subject for HPLC analysis 

Scutellarin, luteolin, 
apigenin 

Antioxidant 
Antidiabetic [83] 

Leaves 

Maceration with methanol 80 fractionation to 
hexane, followed by chloroform, the residual brown 

aqueous phase was considered as the polyphenol-rich 
fraction that subject for HPLC analysis 

Apigenin Antioxidant 
Antidiabetic [84] 

 

Extracts obtained from the leaves of Clerodendrum glandulosum have been reported to have antioxidant, he-
patoprotective, anti-inflammatory, cardioprotective, hypolipidemic, anti-obesity, anti-hyperglycemic and anti-
diabetic properties [85]. It also prevents adipocyte differentiation and visceral adiposity by downregulating pero-
xisome proliferator-activated receptor γ (PPAR-γ) related genes and leptin expression, thus validating its 
traditional therapeutic use in controlling obesity [86]. The methanolic extract of this plant was assayed for its free 
radical scavenging potential using different in vitro assays and showed strong antioxidant activity [87]. Regarding 
metabolic disorder, the freeze-dried extract was reported to be able to regulate plasma lipids in hyperlipidemia 
rats [88]. The hypolipidemic effects on a rat model of hyperlipidemia were studied by Jadeja et al. [89], which 
showed a decrease in body weight (9.6 %), plasma total cholesterol (15.63 %), triglyceride (42.99 %), phospholi-
pids (13.91 %), LDL-C (81.36 %), and VLDL-C (43 %) along with an increase in HDL-C (52.84 %).  

Biological activities of isolated flavonoids  

Quercetin 

Quercetin (C15H10O7, Figure 2) is a flavonoid in fruits and vegetables. It has unique biological properties that 
can improve physical and mental health and reduce the risk of infection [90]. Quercetin has diverse biological 
activities, such as antioxidant [91,92], antidiabetic [93], cardioprotective [94], anti-obesity [95] antihyper-
tension [96], anti-Alzheimer [97], antitumor [98] and anti-hyperpigmentation [99].  

The antioxidant properties of quercetin occur due to its ability to capture free radicals and bind transition 
metal ions [100]. The presence of the 3',4'-diphenolic group in quercetin allows this flavonoid to be effective 
in superoxide anion scavenging activity [101].  
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Figure 2. Quercetin 

Research shows that quercetin will be produced in white blood cells and the liver shortly after consuming 

vegetables rich in quercetin [102], where quercetin is able to prevent damage to red blood cell membranes 

due to smoking [103]. Several studies have shown that quercetin has hepatoprotective activity in mice 

induced with a high-fat diet [104], reducing oxidative stress caused by hyperglycemia and diabetes by 

modulating carcinogenic signalling pathways [105]. 

Several studies have shown the antidiabetic mechanism of quercetin in vitro and in vivo through increasing 

pancreatic islet regeneration and possibly increasing insulin release in STZ diabetic rats [106], reducing 

oxidative stress and protecting pancreatic β-cells [107], improving liver and kidney function by restoring cell 

proliferation through inhibiting CDKN1A gene expression [108], increasing adiponectin secretion by PPAR-γ 

independent mechanism, and reducing fasting glucose and HbA1c through decreasing intestinal maltose 

activity [109]. In their research, Ahmet et al. showed that quercetin accelerated wound healing in diabetic 

and non-diabetic mice through the mechanism of reducing proinflammatory cytokines [110], inhibited the 

secretion of cytochrome P450 2E1 (CYP2E1) during the development of diabetes, thereby preventing 

oxidative damage in the liver [111] and also provided neuroprotective effects through the mechanism of 

preventing acetylcholinesterase (AChE) activity in the brains of diabetic mice [112]. In the case of anti-obesity, 

quercetin is reported to have the ability to stimulate hepatic mitochondrial oxidative metabolism through 

the induction of heme oxygenase-1 (HO-1) in the nuclear factor-related erythroid factor 2, Nrf-2 pathway 

[113]. In studies of cardioprotective activity, quercetin was reported to work in post-traumatic reversal 

reactions of cardiac dysfunction by reducing cardiomyocyte apoptosis, thereby suppressing the increase in 

tumour necrosis factor (TNF) alpha, reactive oxygen species (ROS) and Ca2+ production [114], as well as an 

alternative treatment for ischemia-reperfusion injury (IRI) by inducing blood vessel dilation through inhibition 

of endothelin-1 receptors, increased stimulation of nitric oxide (NO) and activation of calcium channels [115]. 

For antihypertensive activity, quercetin works to inhibit the activity of the cytochrome P450 (CYP) 4A enzyme 

and the soluble epoxide hydrolase (sHE) enzyme, the two main enzymes of arachidonic acid metabolism in 

the kidneys which regulate blood pressure [116]. In in silico research using molecular docking, quercetin was 

able to bind angiotensin-converting-enzyme (ACE), an enzyme responsible for regulating blood pressure with 

an optimal binding energy of −35.564 kJ/mol [117].  

Having a neuroprotective activity, quercetin works to inhibit cholinesterase (ChE) activity, thereby 

restoring the balance of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in brain tissue [118]. 

Studies in mouse models of Alzheimer's showed that quercetin reduced extracellular β-amyloidosis plaques, 

tauopathy, astrogliosis and microgliosis in the hippocampus and amygdala of mice, which are characteristic 

of Alzheimer's [119]. Quercetin induces apoptosis through activation of the mitochondrial pathway (caspase 

cascade) and by inhibiting signals in the human hepatoma cell line - HepG2 [120], disrupts the Akt/PKB 

pathway by inhibiting the proliferation process and induces apoptosis [121], increases TNF-related 

cytotoxicity apoptosis-inducing ligand (TRAIL-anticancer drug) by activating caspases and inhibiting Akt 
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phosphorylation [122] and induces the apoptotic pathway in MCF-7 cells [123]. Structurally, the mechanism 

of action of quercetin is the inhibition of the DNA topoisomerase I and II enzymes, which play a role in 

cleavage in the proliferate phase, through substitution of the keto group C-4 and substitution of the hydroxyl 

groups of ring A and ring B at positions C-3, C-5, C-7 , C3' and C4' [124].  

Studies also reported the ability of quercetin to inhibit tyrosinase, an enzyme that plays a role in the 

synthesis of melanin [125]. Controlling tyrosine activity will lead to the treatment of hyperpigmentation 

disorders in mammals and enzymatic browning of fruits and fungi [126]. An in vitro study showed that quercetin 

could significantly inhibit both the monophenolase and diphenolase activity of tyrosinase and inhibited the 

formation of dopaquinone in a reversible competitive manner with an IC50 value of (30.8±7.4) mol/L [125] and 

(44.5±1.3) mol/L [127]. In silico studies through molecular docking suggested the inhibition activity of 

quercetin due to the catechol structure (3’,4’ dihydroxy groups in B ring) of quercetin that chelated copper in 

the active site of tyrosinase resulting in the blocking access of the substrate L-DOPA. The report showed the 

non-hydrogen bonding interaction with various amino acid residues, including Gly281, Ser282, Met280, His263, 

Phe292, Val283, His61, Ala286, His85, His259, Phe264, Asn260, Met257 and Val248 [127], while Fan et al. [128] 

reported this bonding occurs on Cys83 and His85. Another study by Park et al. [129] reported that quercetin-7- 

-O-α-L-rhamnoside, a quercetin glycoside, inhibits tyrosinase activity and melanogenesis in α-MSH plus IBMX-

stimulated B16F10 melanoma cells. Docking simulation revealed hydrogen bonding of this flavonoid with amino 

acid residues His85, His244, Thr261, and Gly281 of tyrosinase.  

Despite its diverse biological activities, the use of quercetin is limited by its low level of solubility, which 

affects its bioavailability [130]. Several studies have been carried out to increase the bioavailability of this 

compound, including the combination of quercetin with insulin, which can increase bioavailability by 20 % [131], 

encapsulating quercetin with lecithin-chitosan nanoparticles [132], encapsulating with lipid nanoparticles [133], 

using rice bran protein as an emulsifier [134], co-crystallization with nicotinamide [135], and by attaching a 

sugar group to the 3-OH position of quercetin in order to increase the whitening effect [136]. 

Apigenin 

Apigenin (APG, 4′,5,7-trihydroxyflavone - C15H10O5, Figure 3) attracted attention for the first time in the 

1960s when this compound was found to suppress the release of histamine from cells of white basophils and 

exhibited bronchial dilating effects on the lungs [137]. A number of studies show the ability of these flavones 

to inhibit and stop cell proliferation in several types of cancer, such as pancreatic, colon, liver, blood, lung, pro-

state, breast, thyroid, skin and neck [138-140]. In addition, apigenin is also reported to have antioxidant [141], 

and anti-inflammation [142].  

 
Figure 3. Apigenin 

Currently, the development of research on apigenin therapy is being focused on its use to reduce 

chemotherapy resistance of various anticancer drugs by targeting several signalling pathways at the 

cell/molecular level [143]. Research on the effect of apigenin at the cellular level on prostate cancer using 

transformed human prostate epithelial cells and various prostate cancer cells (RWPE-1 cells and prostate 
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cancer LNCaP, PC-3 and DU145 cells) in vivo and in vitro found that apigenin accumulates in the nuclear matrix 

and binds to DNA, thereby reducing oxidative DNA damage and apoptosis [144].  

Another mechanism was also reported by Sukhla and Gupta [145], where apigenin accumulated in cells 

has the potential to interfere with androgen receptor signalling and inhibit androgen-responsive genes. In 

breast cancer research, apigenin was reported to be able to block the development of progestin-dependent 

BT-474 breast cancer cell (BCC) xenograft tumours in female mice [146]. In addition, apigenin is able to reduce 

cell proliferation through modulation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase 

(PI3K-Akt) [147,148]. This MAPK modulation is also key to the anti-inflammatory activity of apigenin [149], 

while Kang et al. [150] demonstrated apigenin's regulation of the production of TNF-α, IL-6, IL-8, and GM-CSF 

in HMC-1 cells. A molecular docking study shows the interaction between apigenin and some genes related 

to papillary thyroid carcinoma with the binding energy range from −31.4636 to −18.7025 kJ/mol [151].  

Zhang et al. [152] reported the whitening effect of apigenin through in vitro testing using melanin pro-

duction and tyrosinase activity assays. They propose that the higher rate of inhibitory activity is due to the 

presence of 7 and 4’ hydroxyl groups in this flavonoid. An in vitro test was also reported by Karaoglan et 

al.[153], where apigenin showed a tendency to inhibit tyrosinase activity by 49.36±0.24 %. Molecular docking 

simulations showed a hydrogen bond between the hydroxyl group of the benzopyran ring and the carbonyl 

group of Met280, as well as a hydrophobic interaction with residues of Val248, Phe264, Met280, Val283, 

Ala286, and Phe292. Additionally, polar interactions were observed with His61, Hid85, Ser282, His263, 

Asn260, and His259. However, an in vivo study report by Chauhan et al. [154] using a hydroquinone-induced 

vitiligo mouse model found that apigenin significantly prevented vitiligo by acting as an anti-inflammatory, 

increasing tyrosine, and reducing the expression of non-phosphorylated P38 mitogen-activated protein 

kinases (p38MAPK). The activation of the p38MAPK pathway, which resulted in an increase in melanogenesis 

in B16 cells, was also reported by Ye et al. [155], who suggested apigenin for hypopigmentation disorder 

treatment. On the other hand, the glycoside of apigenin, apigenin-6-C-glucoside, tends to suppress melanin 

synthesis via the down-regulation of intracellular tyrosinase signalling due to the presence of the hydroxyl 

group at the A and B rings [156].  

Scutellarin 

Scutellarin (7-O-β-D -glucuronide - C21H18O12 - Figure 4) was first investigated for drug development in the 

late 1970s when it was isolated from the Chinese herbal plant, Erigeron breviscapus [157]. This flavonoid is 

studied for the treatment of heart disease, stroke and diabetes complications because of its ability to relax 

blood vessels and its anti-inflammatory, antimicrobial, anticoagulation, antioxidant properties and 

myocardial protection [158,159]. The scutellarin relaxing effect was studied for preventing SARS CoV-2 using 

molecular docking by Chen and Du [160] and found that scutellarin was able to interact with angiotensin-

converting enzyme 2 (ACE2), the host receptor of SARS CoV-2.  

 
Figure 4. Scutellarin 
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The binding energy to ACE2 is estimated at --62.3415 kJ/mol, with binding sites at Glu495, Unk957, and 

Arg482. For the treatment of stroke, scutellarin was reported to have therapeutic effects on cerebral 

ischemia by activating the astrocytic Janus kinase 2/signal transducer and activator of transcription 3 

(JAK2/STAT3) signalling pathway [161], and by reducing the infarct cerebral tissue area in middle cerebral 

artery occlusion (MCAO) rats [162].  

Luo et al. [163] reported that scutellarin, which has anti-inflammatory activity, can provide protection 

against hyperglycaemia induced by vascular inflammation. Furthermore, Long et al. [164], who conducted 

research on mice, reported that scutellarin was able to inhibit damage to apoptotic cells and disruption of 

mouse testes morphology due to hyperglycaemia. Su et al. [165] also reported the ability of scutellarin to 

inhibit protein kinase translocation by in vivo and in vitro studies, making it possible to treat complications 

due to diabetes. Wang et al. [166] reported the protective effect of scutellarin on intervertebral disc 

degeneration (IVDD) by reducing the amount of ROS, alleviating mitochondrial damage, and decreasing the 

expression levels of apoptosis-related biomarkers.  

The antitumor activity of scutellarin was reported through inhibiting proliferation and inducing apoptosis 

of HepG2 cells in liver cancer [167], attenuating the development of fibrosarcoma and inhibiting cancer cell 

metastasis [168], and inhibiting the invasive potential of melanoma cell lines by suppressing the EMT and 

angiogenesis through the PI3K/Akt/mTOR signalling pathway [169]. Scutellarin was also reported to 

significantly reduce multiple myeloma xenograft tumour burden in nude mice [170]. Research on white mice 

reported the protective effect of scutellarin against acute cardiac toxicity due to the use of the drug 

doxorubicin, one of the most frequently used cancer drugs [171]. Besides that, scutellarin was also able to 

protect against the disruption of blood flow to the heart [172]. 

Scutellarin also reports the capability to inhibit cellular tyrosinase enzymes, leading to decreased melanin 

production with no cytotoxicity effect [173]. Using in vitro and computational simulation, Chen et al. [174] 

reported scutellarin inhibited tyrosinase activity in a competitive manner with an IC50 of 91 μM and predicted 

that scutellarin was mainly bound with tyrosinase via Arg268 residue.  

Hispidulin 

Hispidulin (4',5,7-trihydroxy-6-methoxyflavone, C16H12O6, Figure 5) is one of the flavonoids that is an active 

ingredient in Chinese medicine and is reported to have anticancer, anti-inflammatory, and antioxidant 

activities [175]. The anticancer activity of hispidulin is due to its ability to inhibit the proliferation and metastasis 

of hepatocellular carcinoma (HCC) cells by activating PPAR-γ [176], suppressing allergic inflammatory reactions 

by reducing the release of histamine and inflammatory cytokines such as TNF-α and interleukin-4 [177]. 

Hispidulin is also reported to activate AMP-activated protein kinase (AMPK), thereby suppressing eukaryotic 

initiation factor 4E-binding protein (4E-BP1) via the rapamycin (mTOR) pathway in glioblastoma multiforme 

(GBM) cells, one of the most common and deadly types of brain cancer [178]. The same mechanism was also 

reported in relation to ovarian cancer, where activation of AMPK increased the sensitivity of TNF-related 

apoptosis-inducing ligand (TRAIL), thereby reducing the protein expression of MCL-1, a group of antiapoptotic 

proteins [179]. In pancreatic cancer, the target of hispidulin is the vascular endothelial growth factor (VEGF) 

receptor 2 mediated PI3K/Akt/mTOR signalling pathway in endothelial cells, thereby suppressing pancreatic 

tumor cell growth and angiogenesis [180]. In studies of hepatoblastoma cancer cells hispidulin was reported to 

induce apoptosis through mitochondrial dysfunction and inhibition of the PI3K/Akt signalling pathway [181]. 

The anti-inflammatory effect of hispidulin in neuroinflammation was reported by its capability to increase 

dopamine levels in the prefrontal cortex of phencyclidine-treated mice and reverse social withdrawal in 

schizophrenia-1 mutant mice [182].  
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Figure 5. Hispidulin 

In an in vivo study using epilepsy-gerbil models, hispidulin was shown to reduce seizure suffering with the 

same effect as diazepam, a drug for anxiety disorders [183]. Hispidulin was also reported to relieve intractable 

motor tic disorder in a mouse model for hyperdopaminergic states, a condition found in patients with 

schizophrenia and obsessive-compulsive disorder [184]. The anti-seizure effect of hispidulin was reported to 

be achieved through suppressing the inflammatory process and activating the mitogen-activated protein 

kinases A in kainic acid-induced rats [185].  

The antidiabetic activity of hispidulin was reported by stimulating glucagon-like peptide-1 secretion and 

suppressing hepatic glucose production [186]. Hispidulin is also reported to have potential as a therapy in 

diabetic retinopathy because of its ability to improve high glucose-induced proliferation by reducing the 

expression of protein kinase, phosphorylated extracellular regulated kinase and VEGF-A, and inhibiting mRNA 

levels of TNF-α [187]. Molecular docking in this study shows that hispidulin has the highest affinity with VEGF-

A and the second highest with TNF-α compared to other modelled compounds. Hispidulin forms hydrogen 

bonds with Cys5, Asp6 and Glu12 in VEGF-A and Tyr227 and Tyr195 on TNF-α.  

Salvigenin 

Salvigenin (5-hydroxy-6,7-bis(trideuteriomethoxy)-2-[4-(trideuteriomethoxy) phenyl] chromen-4-one, 

C18H16O6, Figure 6) is a derivative of apigenin with different biological activities and reported antioxidant, 

anticancer and antidiabetic activities [188]. In vitro studies using human neuroblastoma SH-SY5Y cells showed 

that salvigenin protected cells from H2O2-induced oxidative stress [189], while in vivo study using atrazine-

induced rats showed that salvigenin protected the liver tissues via regulating antioxidant, anti-inflammatory 

and anti-apoptotic [190]. Uydes-Dogan et al. [191] reported a vasorelaxation effect on rat aortic rings related 

to antioxidant activity, thus enabling the use of this flavonoid in cardiovascular disease treatment. 

 
Figure 6. Salvigenin 

Research conducted by Noori et al. [192] in female mice showed the antitumor activity of salvigenin 

through modulation of cytokine production, where there was a decrease in the production of interleukin 4 

and an increase in the production of interferon γ. In liver cancer, salvigenin was reported to have the ability 

to reduce the proliferation, migration and invasion of hepatocellular HCC cells and suppress cell glycosides 

and chemoresistance by modulating the PI3K/AKT/GSK-3β pathway [193]. Anticancer activity was also 

reported in relation to oral squamous cell carcinoma, where molecular docking studies showed the binding 

energy of salvigenin with AKT1 was-33.0536 kJ/mol on Gly294 and Lys179 [194]. The combination of 
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salvigenin with doxorubicin (DOXO), a treatment for chemotherapy patients, was reported to reduce DOXO 
toxicity through the mechanism of increasing Bax/Bcl-2 ratio, caspase-3 expression and PARP cleavage [195].  

Salvigenin was reported to increase insulin secretion and reduce HbA1c, and at the same time was able 
to influence the lipid profile by reducing triglycerides, total cholesterol, and HDL in diabetic rats [196]. An in 
vitro test using hepatic HuH7 cells shows the capability of salvigenin to inhibit lipogenesis and stimulate 
mitochondrial functionality [197]. Molecular docking simulation showed that the antidiabetic mechanism of 
salvigenin is by forming two hydrogen bonds at Lys169 and Glu443 with glucokinase [198]. 

Acacetin 

Acacetin (5,7-Dihydroxy-4'-methoxyflavone, C16H12O5, Figure 7) is an apigenin derivative but has different 
activities from apigenin. Several studies have reported the antioxidant, anti-inflammatory, and anti-cancer 
activities of this flavonoid [199]. A review by Semwal et al. [200]found that there was commercial health 
supplements based on acacetin with more than 1000 patents related to acacetin as appetite suppression, 
treatment for prostate cancer, anti-allergy and anti-inflammatory activities. A test on type 2 diabetic mice 
models shows that acacetin could improve blood glucose and lipid metabolism and liver and kidney 
dysfunction, where this potential was related to the antioxidant and anti-inflammatory activity of this 
flavonoid [201]. Using RINm5F cells, Wang et al. [202] reported the mechanism of acacetin against lipo-
toxicity in pancreatic β-cells. This mechanism involves reducing oxidative stress by scavenging intracellular 
ROS, upregulating endogenous antioxidant enzymes, diminishing sub-G1 DNA fraction in cells exposed to free 
fatty acid (FFA), and decreasing endoplasmic reticulum stress by mitigating the overload of intracellular Ca2+ 
and reducing pro-apoptotic protein expression in FFA - stimulated cells. Han et al. [203] reported that 
acacetin has the capability to attenuate diabetes-accelerated atherosclerosis by protecting vascular 
endothelial cells from injury induced by hyperglycaemia. This protection is achieved by preserving 
mitochondrial function through Sirt1-mediated activation of Sirt3/AMPK/PGC-1α signalling molecules.  

 
Figure 7. Acacetin 

Research related to the anti-inflammatory activity of acacetin has reported the anti-neuroinflammatory 
effects in Parkinson's disease mouse models. Acacetin was found to protect dopaminergic cells and inhibit 
the production of inflammatory trigger factors such as nitric oxide, prostaglandin E2, and TNF - α [204]. In 
the context of dental inflammation, acacetin has shown the ability to suppress inflammation by regulating 
autophagy and glycogen synthase kinase 3β (GSK-3β) signalling in human periodontal ligament cells [205]. 

The anticancer activity of acacetin is reported by its ability to inhibit cell growth and induce apoptosis in 
gastric carcinoma cells [206], inhibit the migration of MDA-MB-231 and T47D cells in breast cancer [207], 
inhibit the activity of signal transducer and activator of transcription 3 (STAT3) in prostate cancer [208], 
inhibit the invasion and migration of A549 cells in lung cancer through inhibiting the phosphorylation of Jun 
N-terminal kinase 1 and 2 (JNK1/2), reduction of activator protein-1 (AP-1) and nuclear factor kappa B - NF-
κB [209]. Zhang et al. [210] reported that acacetin can induce cell cycle arrest in the G2/M phase, apoptosis, 
and autophagy in breast cancer cells, resulting in downregulation of PI3Kγ-p110 and the disruption of the 
PI3K/AKT-mammalian target signalling pathway of rapamycin (mTOR). Molecular docking in this study shows 
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that acacetin forms hydrogen bonds with PI3Kγ via Ser806, Ala885, and Val882, and hydrophobic interactions 

with Lys833 and Asp964. The PI3K/AKT/mTOR pathway has become a “hot spot” of molecular biomarker-

based/targeted therapy because research in several types of cancer, such as breast, liver, colorectal, prostate, 

and gastric cancers, shows the presence of irregularities in this pathway [211].  

Pectolinaringenin 

Pectolinaringenin (5,7-dihydroxy-4′,6-dimethoxy-flavone, C17H14O6, Figure 8) was first isolated from the Linaria 

vulgaris plant more than 100 years ago and has since been isolated as the main component in herbal plants in 

various countries [212]. Pectolinarigenin has been reported to have various biological activities, such as 

antioxidant, anticancer, anti-inflammatory, antidiabetic and treatment for various brain-related illnesses [213].  

 
Figure 8. Pectolinaringenin 

Shiraiwa et al. [214] reported the antioxidant activity of pectolinarigenin through in vitro inhibition tests 

using the 2,20-Azobis (2-amidinopropane) dihydrochloride (AAPH) assay. Furthermore, using HepG2 cancer 

cells, the study reported that pectolinarigenin-induced antioxidant enzymes, heme oxygenase-1, 

NAD(P)H:quinone oxidoreductase 1, and aldo-keto reductase family 1 member B10. The induction mechanism 

for these enzymes is through nuclear accumulation of Nrf2 which increases transcriptional activity mediated by 

the antioxidant response element (ARE) and suppresses Nrf2 degradation through modification of Kelch-like 

ECH-associated protein 1 (Keap-1). Research by Pang et al. [215] using SH-SY5Y neuronal cells showed that 

pectolinarin, a glycoside of pectolinarigenin can scavenge hydroxyl and nitric oxide radicals, increase cell 

viability, reduce ROS production and lactate dehydrogenase release (LDH). Therefore, it is promoted to be 

applied for the treatment of oxidative stress-related neurodegenerative diseases.  

The activity of pectolinaringen in inhibiting several types of cancer, including liver cancer, has been reported. 

Research using HCC cells, SMMC7721 and PLC5, has shown that this flavonoid can suppress the proliferation of 

HCC cells by inducing cell apoptosis and cell cycle arrest. It also reduces migration and invasion of HCC cells and 

deactivates the PI3K/AKT/mTOR/ ERK signalling pathway [216]. Research on nasopharyngeal cancer using  

C666-1 cells have shown that pectolinaringen can induce apoptosis in C666-1 cells through the mitochondrial-

related apoptotic pathway and ROS-induced apoptotic pathway [217]. The western blot test in this study 

showed an increase in cleavage caspase 3 and 9 levels, indicating that the caspase inhibitor (z-VADfmk) 

significantly prevented the increase of apoptotic cells. Zhou et al. [218] reported the potential of pectolin-

aringen as a treatment for pancreatic cancer using human pancreatic cancer cells (Patu 8988 and BxPC-3). 

Pectolinaringen induces apoptosis and reduces the phosphorylation of signal transducer and activator of 

transcription 3 (STAT-3). In breast cancer, in vitro assays of MCF-7 cancer cells demonstrated antiproliferative 

activity of pectolinaringen by inducing apoptosis and downregulation of B-cell lymphoma 2 (Bcl2) expression 

[219]. Furthermore, research on gastric cancer cells using AGS and MKN28 cells showed the ability of 

pectolinaringen to inhibit the viability of human gastric cancer cells via the AKT/PI3K/mTOR pathway [220]. This 

inhibitory mechanism begins with the stimulation of intracellular protein ubiquitination and proteasome 
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degradation of proteins, including caspase-3/-7 and AKT. This is followed by Beclin-1-independent autophagy 

and subsequent caspase-dependent apoptosis, leading to gastric cancer cells' death.  

The anti-melanogenic activity of pectolinarigenin was reported through in vitro tests using melan-A cells, 

where pectolinarigenin was able to inhibit melanogenesis by inhibiting the protein expression of 

microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1, and 

TRP-2, which play a role in synthesis thereby reducing melanin synthesis [221]. In line with its anti-

melanogenic ability, Deng et al. [222] conducted in vitro research using A375 and CHL‑1 cells and found that 

pectolinarigenin was able to inhibit cell viability, proliferation, invasion and migration and induce apoptosis 

through the apoptotic ROS‑mitochondrial pathway. 

Hesperetin and hesperidin 

Hesperetin (3',5,7-Trihydroxy-4'-methoxyflavanone, C16H14O6, Figure 9a) together with its glycoside, hesperidin 

((2S)-3',5-Dihydroxy-4′-methoxy-7- [α-L- rhamnopyranosyl- (1→6)-β-D-glucopyranosyloxy] flavan-4-one, C28H34O15, 

Figure 9b) has diverse biological activities, such as antioxidant, anti-inflammatory, neuroprotective, anticancer, 

cardiovascular protection and antidiabetes [223-225]. The antioxidant activity of hesperetin and hesperidin occurs 

through direct radical scavenging and augmenting cellular antioxidant defense [226]. The direct radical scavenging 

pathway plays an important role in protecting the body's DNA, proteins and other tissues. Hesperetin and 

hesperidin are reported to protect tissue damage from exposure to toxic compounds, such as hydrogen peroxide, 

1,2-dimethylhydrazine, benzo(a)pyrene and peroxynitrite [227,228]. In the second pathway, hesperidin is 

reported to play a role in increasing cellular defence through the ability to upregulate the protein levels of nuclear 

factor erythroid 2-related factor 2 (Nrf-2) [229]and induction of heme oxidase-1 through extracellular signal-

regulated protein kinase [ERK)/Nrf2 signalling [230].  

a b 

  
Figure 9. Hesperetin (a), hesperidin (b) 

In connection with this antioxidant ability, studies report the inhibitory effect of hesperidin and hespertin on 

the formation of advanced glycation end products (AGEs), the end products of the Maillard reaction [231]. AGEs 

cause damage to extracellular proteins, thereby contributing to diabetes complications such as cataracts, 

nephropathy, vasculopathy, proliferative retinopathy, and atherosclerosis [232]. The study conducted by Shi et al. 

[233] on streptozotocin-induced diabetic rats showed that hesperidin suppressed blood retina breakdown and 

increased retinal thickness, reduced blood glucose, aldose reductase activity, retinal levels of TNF-α, ICAM-1, 

VEGF, IL-1β, and AGEs, as well as reduced the level of plasma malondialdehyde (MDA) and increased SOD activity. 

Using computational molecular docking, Gong et al. [234] reported the α-glucosidase inhibition activity of 

hesperetin, where two hesperetin rings interact with several residues near the active site of the enzyme, such as 

Lys155, Asn241, Glu304, Pro309, Phe311, and Arg312. An in vivo study by Akiyama et al. [235]also reported the 

capability of hesperidin glycosides to reduce blood glucose levels in diabetic rats by altering the activities of 

glucose-regulating enzymes and lowering the serum and liver lipid levels.  

The ability of hesperetin in cancer treatment has been reported in several studies. Yang et al. [236] 

reported the ability of hesperetin as an inhibitor of the transforming growth factor β (TGF-β) signaling 
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pathway, where this inhibition will block the metastatic properties of cancer cells. Through testing on male 

Wistar rats induced by 1,2-dimethylhydrazine (DMH) as an agent of colon carcinogenesis, Arangathan and 

Nalini [237] reported that hesperetin was able to reduce tumour multiplicity, tumour incidence and burden 

of DMH-induced colorectal tumorigenesis. Histological observations showed that the administration of 

hesperetin in experimental conditions affected colon carcinogenesis at every stage. The group that was given 

hesperetin continuously showed significant changes compared to the group that was only given hesperetin 

at the initiation and post-initiation stages. Using the same DMH induction method in male Wistar rats, Nalini 

et al. [238] reported the efficacy of hesperetin as a chemo-preventive agent. It was found to inhibit cell 

proliferation markers, angiogenic growth factors (VEGF, EGF, bFGF), COX-2 mRNA expression and induce 

apoptosis. In order to find out the effect of hesperetin on colon cancer apoptosis, the HT-29 human colon 

adenocarcinoma cell line was used, where hesperetin was able to inhibit the proliferation of HT-29 cells by 

inducing apoptosis through the Bax-dependent mitochondrial pathway, which involves an oxidant/anti-

oxidant imbalance [239].  

In breast cancer research, in vitro tests using MCF-7 cells showed that hesperetin inhibited cell proliferation, 

induced cell cycle arrest at the G1 phase, and induced apoptosis [240]. This study also reports the regulation of 

cyclin-dependent kinases-4 (CDK-4) and p21Cip1, which may participate in the inhibitory mechanism. In vivo 

study reported by Ye et al. [241] in a mouse model that was injected with MCF-7aro cells, where hesperetin 

inhibited the activity of the aromatase enzyme (estrogen synthetase) and suppressed the proliferation of the 

MCF-7 breast cancer cell line. Aromatase is a key enzyme in the conversion of androgens to estrogen, and 

exposure to both endogenous and exogenous estrogens has been linked to the initiation and promotion of 

hormone-dependent diseases such as breast cancer [242].  Measurements of mouse blood plasma showed a 

decrease in plasma estrogen and messenger RNA expression of the estrogen-responsive gene pS2 in mouse 

models [241]. This research shows that the mechanism of hesperetin in preventing cell growth is through down-

regulating the expression of cyclin D1, CDK4 and Bcl-xL and up-regulating p57Kip2 expression. 

The skin protective activity of hesperetin tested using murine B16-F10 melanoma cells shows the ability 

of hesperetin to stimulate melanogenesis through the activation of MAPK, phosphorylation of cAMP-

responsive element binding protein (CREB), and glycogen synthase kinase-3b [243]. Using inhibition kinetics 

and computational simulation, Si et al. [244] reported that hesperetin inhibited tyrosinase in a competitive 

manner and predicted that putative hesperetin-binding residues include Met280, His61, His85, and His259. 

Another report by Hong et al. [245] using multivariate curve resolution-alternate least squares (MCR-ALS) 

analysis suggested that tyrosinase interacted with hesperetin and formed a tyrosinase-hesperetin complex. 

Molecular docking showed that hesperetin entered the hydrophobic cavity of tyrosinase PPO and bound near 

the dinuclear copper active centre. It interacted with Val283, Phe264, His85, Asn260, Val248, and His263 via 

hydrophobic interactions, formed hydrogen bonds with Met280, His89, and His259 residues, and also 

interacted with Phe292, His61, Phe90, Glu256, His244, Asn260, Phe264, and Gly281 via van der Waals forces.  

In research related to SARS-CoV-2, hesperidin and hesperetin were reported to be able to prevent the 

binding of the virus to angiotensin-converting enzyme 2 (ACE2) in host cells, inhibit viral replication after 

penetration into host cells, and prevent and counteract excessive proinflammatory reactions from the 

immune system [246]. Molecular docking studies on 3 SARS-CoV-2 target proteins, namely SARS-CoV-2 Mpro, 

SARS-CoV-2 PLpro and SARS-CoV-2 spike glycoprotein, show that the ligand binding affinity score for 

hesperidin is 24.27, -41.84 and -33.89 kJ/mol, respectively [247]. Another molecular docking carried out on 

24 SARS-CoV-2 proteins reported that hesperidin exhibited high binding affinity to 2 target proteins for 

preventing the virus RNA synthesis and replication (3CLpro and Helicase) and was the only natural compound 



ADMET & DMPK 12(6) (2024) 843-879 Natural serine proteases in combating amyloid formation 

doi: https://doi.org/10.5599/admet.2442  959 

in the simulation that could target the binding interface between spike and ACE2 through the formation of a 

hydrogen bond at Tyr440 [248]. 

Luteolin 

Luteolin (3,4,5,7-tetrahydroxy flavone, C15H10O6, Figure 10) is a natural flavonoid widely isolated from 

traditional Chinese medicine plants used for treating hypertension, inflammatory disorders, and cancer [249]. 

Luteolin is reported to have various biological activities such as antioxidant, antidiabetic, neuroprotective, 

antiallergy, and anticancer [250-252]. 

Luteolin's antioxidant activity is due to the presence of the 1,4-pyrone moiety group [253] and its ability to 

donate H atoms with low energy [254]. In in vivo study using rat hepatocytes cells induced by tert-butyl 

hydroperoxide (tBHP), the antioxidant mechanism of luteolin is through up-regulating antioxidant enzyme gene 

transcription through up-regulating protein heme oxygenase-1, glutamate cysteine ligase, and glutamate-

cysteine expression ligase modifier subunit via the extracellular signal-regulated protein kinase 2/nuclear factor 

erythroid 2-related factor 2 (ERK2/Nrf2) pathway [255].  

 
Figure 10. Luteolin 

Antidiabetic activity of luteolin was reported through in vitro inhibition tests of the α-glucosidase and α-

amylase enzymes [256]. Molecular docking of the α-glucosidase enzyme shows a hydrogen bond between 

the hydroxyl group of luteolin and Asp285 on H27 and H33 [257], while research by Rekha et al. [198] shows 

a bond energy of -30.9616 kJ/mol with the glucokinase receptor on Ser151, Asp20 and Thr228.  

In neuroprotective research, the administration of luteolin improved the learning and memory abilities of 

Alzheimer's disease model mice. This was followed by the inhibition of neuroinflammation and a decrease in 

the expression of endoplasmic reticulum stress markers in brain tissue [258]. Research conducted on 

subarachnoid haemorrhage model mice demonstrated that luteolin was able to repair oxidative damage by 

increasing the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and downregulation of the 

activation of inflammatory nod-like receptor pyrin domain-containing 3 (NLRP3) [259]. In cases of intracere-

bral haemorrhage caused by brain injury, luteolin was reported to prevent the activation and infiltration of 

microglia and reduce the release of proinflammatory factors (IL-6, IL-1β, TNF-α). Additionally, it inhibited the 

activation of the TLR4/TRAF6/NF-κB signalling pathway [260].  

Schomber et al. [261] reported an in vivo study of luteolin's ability to inhibit the growth of xenografted 

melanoma tumours in a mouse model induced by tumour cells BRAF-mt A375 and BRAF-wt WM3211 cells. 

Tumour cells shrank after administration of luteolin, while in vitro studies showed luteolin plays a role in the 

interaction pathway between cells (extracellular matrix), oncogenic pathway, and immune response 

signalling pathway. In relation to the melanogenesis pathway, an in silico study reported the capability of 

luteolin to inhibit the tyrosinase enzyme by establishing a binding between four hydrogen bonds to Tyr65, 

Lys79, Cys83, and Glu322 [128]. Molecular docking simulation also shows that the hydroxyl groups of the B 

ring of luteolin will bind to Asn81 and Cys83, and the HPLC and UPLC-MS analyses explained that luteolin 

acted as a substrate or a suicide inhibitor [262].  
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Using human hepatoma cell lines, HepG2, HLF, and HAK-1B, as well as the human neuroblastoma cell line 
IMR-32, Selvendiran et al. [263] reported the protective ability of luteolin against cancer through the 
mechanism of increasing CD95 (cluster of differentiation 95) expression in neoplastic cells in vivo and in vitro, 
promoting phosphorylation of signal transducer and activator of transcription 3 (STAT3) through a ubiquiti-
nation-dependent process; and was able to significantly inhibit the growth of human HCC xenografts in nude 
mice. In esophageal cancer research using human ESCC cell lines (EC1 and KYSE450 ESCC), it was shown that 
luteolin was able to induce apoptosis and caspase-3 activation as well as induce cell cycle arrest at the G2/M 
phase, where in vivo tests on model mice injected with EC1 showed a decrease in mass tumours in the luteolin 
treatment group [264].  

Nepetin 

Nepetin (Eupafolin, 6- methoxy-5,7,3ʹ,4ʹ-tetrahydroxy-flavone, C16H12O7, Figure 11) is a flavonoid that was 
isolated for the first time from Eupatorium perfoliatum L., which is widely used in traditional Chinese 
medicines and Indian tribes [265]. Research shows nepetin has anti-inflammatory, antioxidant and antitumor 
properties. The anti-inflammatory mechanism of nepetin is to reduce the release of inflammatory mediators 
(iNOS, COX-2, and NO) and proinflammatory cytokines (IL-6 and TNF-α) in RAW264.7 macrophages induced 
by lipopolysaccharide [266]. The research also reported inhibition of phosphorylation of p38 MAPK, ERK1/2, 
JNK, AKT, as well as p65 nuclear translocation of p65 and c-fos.  

 
Figure 11. Nepetin 

The antitumor activities of nepetin have been investigated and have revealed significant inhibitory 
potential on VEGF - induced cell proliferation [267]. Liu et al. [268] reported that nepetin inhibited the 
proliferation of prostate cancer cells by binding to PI3-Akt and attenuating its kinase activity. In a cervical 
cancer study using human cervical adenocarcinoma cells, nepetin was found to induce apoptosis mediated 
by caspase-dependent pathways involving caspases-3, -9, and -8, which are initiated by the B-cell Lymphoma-
2 -dependent loss of mitochondrial membrane potential (ΔΨm) [269]. Chen and Cheng [270] reported the 
antitumor activity of nepetin in the human non-Hodgkin lymphoma cell line, OCI-LY-3, through inducing cell 
apoptosis. The study also revealed the ability of nepetin to suppress the Akt/mTOR signalling pathway and 
promote autophagy.  

Xu et al. [271]reported the capability of nepetin to inhibit the aggregation of human islet amyloid 
polypeptide (hIAPP). The research shows the average number of hydrogen bonds between hIAPP22-28 octamer 
and nepetin increased from 28 to 71, with possible binding sites occurs in Asn22 and Ser28. The hIAPP is the 
peptide produced by pancreatic β cells in the islet of Langerhans, and the increase of this peptide is associated 
with type 2 diabetes mellitus [272]. The antidiabetic activity of nepetin was also reported through the inhibition 
of -amylase, which was reported to be strong compared to other flavonoids such as scutellarin, apigenin and 
hispidulin, due to the adjacent position of the dihydroxyl group on the B-ring [273]. The molecular docking 
simulation of this study shows that nepetin formed four hydrogen bonds with Gln63 and Asp197. 

The protective effect of nepetin on the skin was reported by Huey-Ko et al. [274], where nepetin was able 
to decrease cellular melanin content and tyrosinase activity on B16F10 melanoma cells. Inhibition of melanin 
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production occurs through the reduction of phospho-cAMP response element-binding protein and micro-

phthalmia-associated transcription factor (MITF), downregulation of tyrosinase synthesis and TRP 

expression, and induction of phosphorylation of ERK1/2 and p38 MAPK.  

Conclusions 

The isolation and identification of flavonoids from the Clerodendrum genus have revealed a variety of 

compounds using various methods. Several factors determine the flavonoid content in Clerodendrum genus, 

such as the plant material part, the extraction techniques, and the solvent combination. Isolated flavonoids 

also show significant biological activity, highlighting the antioxidant, anti-inflammatory agents, antimi-

crobials, antidiabetic, anticancer, anti-tyrosinase, and neuroprotective agents.  

Challenges and perspective  

Flavonoids isolated from the Clerodendrum genus hold potential benefits for promoting health, but there 

are several challenges to pursuing their full potential. Future research should focus on optimizing the 

extraction and isolation techniques, establishing structure-activity relationships, and synthesizing derivatives 

to enhance the bioavailability and bioactivity of the flavonoids. As research continues to develop the 

phytochemistry and bioactivities of the Clerodendrum genus, there are also opportunities to translate these 

findings into practical applications, such as the development of functional foods, nutraceuticals, 

pharmaceuticals, and cosmeceuticals.  
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