Determination of 4-nitrophenol using MoO3 loaded glassy carbon electrode via electrochemical sensing approach

  • Bhagyashri Kamble Shivraj College, Gadhinglaj, Shivaji University, Kolhapur Maharashtra, India
  • Kalyanrao M. Garadkar Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India https://orcid.org/0000-0002-5733-9895
  • Kirankumar K. Sharma School of Nanoscience and Technology, Shivaji University, Kolhapur, Maharashtra, India https://orcid.org/0000-0003-1823-1934
  • Pravin Kamble School of Nanoscience and Technology, Shivaji University, Kolhapur, Maharashtra, India https://orcid.org/0000-0002-4282-0088
  • Shivaji Tayade Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India https://orcid.org/0000-0003-2922-3227
  • Balu D. Ajalkar Shivraj College, Gadhinglaj, Shivaji University, Kolhapur Maharashtra, India
Keywords: Molybdenium oxide nanoparticles, ionic liquid, solvo-hydrothermal synthesis, nitrophenol, voltammetry techniques
Graphical Abstract

Abstract

In order to raise possible ways of MoO3 synthesis and improve its existing applications, MoO3 nanomaterial was successfully synthesized through the solvo-hydrothermal route by utilizing a mixture of ionic liquid (1-butyl-3-methylimidazolium bromide) as a solvent, and water as co-solvent in 1:1 ratio. The morphology and structural parameters of IL-as­sisted MoO3 product were examined by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Additionally, the surface wettability and particle size distribution were inspected using the contact angle and dynamic light scattering (DLS) analysis. Glassy carbon electrode (GCE) surface was then modified by IL-assisted MoO3. The formed IL-MoO3/GCE was employed as an electro­chemical sensor for determination of 4-nitrophenol (4-NP), which is very toxic and important pollutant. The redox behavior of 4-NP at the surface of IL-MoO3/GCE was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Limits of detection (LOD) and limits of quantification (LOQ) determined from CV were found to be 6.76 and 22.5 mM, while from DPV recordings, 5.41 and 18.0 mM are found. The obtained results clearly reveal possible application of MoO3 for selective and sensitive sensing of 4-NP. The decorated electrode was successfully employed for determination of 4-NP in the river water real samples.

Downloads

Download data is not yet available.

References

K. Yoshida, T. Shigeoka, F. Yamauchi, Ecotoxicology and Environmental Safety 7(2) (1983) 179-190. https://doi.org/10.1016/0147-6513(83)90064-7

K. Hustert, M. Mansour, H. Parlar, F. Korte, Chemosphere 10(9) (1981) 995-998. https://doi.org/10.1016/0045-6535(81)90200-9

G. Eichenbaum, M. Johnson, D. Kirkland, P. O’Neill, S. Stellar, J. Bielawne, R. DeWire, D. Areia, S. Bryant, S. Weiner, D. Desai-Krieger, P. Guzzie-Peck, D.C. Evans, A. Tonelli, Regulatory Toxicology and Pharmacology 55(1) (2009) 33-42. https://doi.org/10.1016/j.yrtph.2009.05.018

S. V. Kite, D. J. Sathe, A. N. Kadam, S. S. Chavan, K. M. Garadkar, Research on Chemical Intermediates 46(2) (2020) 1255-1282. https://doi.org/10.1007/s11164-019-04032-7

Z. Dong, X. Le, C Dong, W. Zhang, X. Li, J. Ma, Applied Catalysis B: Environmental 162 (2015) 372-380. https://doi.org/10.1016/j.apcatb.2014.07.009

J. Karaová, J. Barek, K. Schwarzová-Pecková, Analytical Letters 49 (2016) 66-79. https://doi.org/10.1080/00032719.2014.1003424

C. Borrás, T. Laredo, J. Mostany, B. R. Scharifker, Electrochimica Acta 49(14) (2004) 641-648. https://doi.org/10.1016/j.electacta.2003.09.019

X. Guo, Z. Wang, S. Zhou, Talanta 64(1) (2004) 135-139. https://doi.org/10.1016/j.talanta.2004.01.020

H. R. Sobhi, A.Esrafili, H. Farahani, M. Gholami, M. M. Baneshi, Environmental Monitoring and Assessment 185 (2013) 9055-9065. https://doi.org/10.1007/s10661-013-3235-y

J. I. Cacho, N. Campillo, P. Viñas, M. Hernández-Córdoba, Journal of Chromatography A 1241 (2012) 21-27. https://doi.org/10.1016/j.chroma.2012.04.018

M. Christwardana, Y. Chung, D. C. Tannia, Y. Kwon, Korean Journal of Chemical Engineering 35 (2018) 2421-2429. https://doi.org/10.1007/s11814-018-0163-0

Nambudumada S. Prinith, J. G. Manjunatha, Journal of Electrochemical Science and Engineering 10(4) (2020) 305-315. https://doi.org/10.5599/jese.774

Z. Liu, J. Du, C. Qiu, L. Huang, H. Ma, D. Shen, Y. Ding, Electrochemistry Communication 11(7) (2009) 1365-1368. https://doi.org/10.1016/j.elecom.2009.05.004

Z. Liu, H. Zhang, H. Ma, S. Hou, Electroanalysis 23 (2011) 2851-2861. https://doi.org/10.1002/elan.201100385

Y. E Gu, Y. Zhang, F. Zhang, J. Wei, C. Wang, Y. Du, W. Ye, Electrochimica Acta 56(2) (2010) 953-958. https://doi.org/10.1016/j.electacta.2010.09.051

J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, Journal of Hazardous Materials (201-202) (2012) 250-259. https://doi.org/10.1016/j.jhazmat.2011.11.076

X. Jiao, H. Luo, N. Li, Journal of Electroanalytical Chemistry 691 (2013) 83-89. https://doi.org/10.1016/j.jelechem.2012.12.013

M. Danish, A. Bhattacharya, D. Stepanova, A. Mikhaylov, M. L. Grilli, M. Khosravy , T. Senjyu, Metals 10 (2020) 1604. https://doi.org/10.3390/met10121604

N. Guru Prakash, M. Dhananjaya, A. Lakshmi Narayana, Hussen Maseed, V. V. S. S. Srikanth, O. M. Hussain, Applied Physics A 125 (2019) 488. https://doi.org/10.1007/s00339-019-2779-2

K. Inzani. T. Grande, F. Vullum-Bruer, S. M. Selbach, The Journal of Physical Chemistry C 120(16) (2016) 8959-8968. https://doi.org/10.1021/acs.jpcc.6b00585

N. Tahmasebi, M. Khalildashti, Korean Journal of Chemical Engineering 37 (2020) 448-455. https://doi.org/10.1007/s11814-019-0469-6

I. Shaheen, K. S. Ahmad, C. Zequine, R. K. Gupta, A. G. Thomas, M. A. Malik, Journal of Energy Storage 29 (2020) 101309. https://doi.org/10.1016/j.est.2020.101309

A. Dhara, G. Hodes, S. K. Sarkar, RCS Advances 4 (2014) 53694-53700. https://doi.org/10.1039/C4RA08606F

G.R Mutta, S.R Popuri, J.I.B. Wilson, N.S. Bennett, Solid State Sciences 61 (2016) 84-88. https://doi.org/10.1016/j.solidstatesciences.2016.08.016

J. Gong, W. Zeng, H. Zhang, Materials Letters 154 (2015) 170-172. http://dx.doi.org/10.1016/j.matlet.2015.04.092

N. Karousis, T. Ichihashi, S. Chen, H. Shinohara, M. Yudasaka, S. Iijima, N. Tagmatarchis, Journal of Materials Chemistry 20 (2010) 2959-2964. https://doi.org/10.1039/B925169C

Y. Cheng, Z. Chen, H. Wu, M. Zhu, Y. Lu, Advanced Functional Materials 26 (2016) 1338-1346. https://doi.org/10.1002/adfm.201504134

B. B. Kamble, B. D. Ajalkar, A. K.Tawade, K. K. Sharma S. S. Mali, C. K. Hong, C. Bathula, A. N. Kadam, S. N.Tayade, Journal of Molecular Liquids 324 (2021) 115119. https://doi.org/10.1016/j.molliq.2020.115119

A. A. A. Aljabali, J. E. Barclay, J.N. Brett, G. P. Lomonossoff, D.J. Evans, Dalton Transactions 39 (2010) 7569-7574. https://doi.org/10.1039/C0DT00495B

A. Boukhachem, M. Mokhtari, N. Benameur, A. Ziouche, M. Martínez, P. Petkova, M. Ghamnia, A. Cobo, M. Zergoug, M. Amlouk, Sensors and Actuators A: Physical 253 (2017) 198-209. https://doi.org/10.1016/j.sna.2016.11.032

M. Sasidharan, N. Gunawardhana, H. Noma, M. Yoshio, K. Nakashima, Bulletin of the Chemical Society of Japan 85(5) (2012) 642-646. https://doi.org/10.1246/bcsj.20110375.

D. Chen, M. Liu, L. Yin, T. Li, Z. Yang, X. Li, B. Fan, H. Wang, R. Zhang, Z. Li, H. Xu, H. Lu, D. Yang, J. Sun, L. Gao, Journal of Materials Chemistry 21 (2011) 9332-9342. https://doi.org/10.1039/C1JM11447F

T. Rajkumar, G. R. Rao, Journal of Chemical Sciences 120 (2008) 587-594. https://doi.org/10.1007/s12039-008-0089-x

J. Bowers, C. P. Butts, P. J. Martin, M. C. Vergara-Gutierrez, R. K. Heenan, Langmuir 20(6) (2004) 2191-2198. https://doi.org/10.1021/la0359 40m.

X. Duan, T. Kim, D. Li, J. Ma, W. Zheng, Chemistry-A European Journal 19 (2013) 5924-5937 https://doi.org/10.1002/chem.201203176

A. Moldovan, M. Enachescu, Wetting properties at nanometer scale, IntechOpen, 2015. DOI: 10.5772/60886.

P. Kanyong, S. Rawlinson, J. Davis, Sensors and Actuators B: Chemical 233 (2016) 528-534. https://doi.org/10.1016/j.snb.2016.04.099

M. Irfan, T. Ahmad, M. Moniruzzaman, S. Bhattacharjee, B. B. Abdullah, Arabian Journal of Chemistry 13(1) (2017) 75-85. http://dx.doi.org/10.1016/j.arabjc.2017.02.001

M.-A. Neouze, Journal of Materials Chemistry 20 (2010) 9593-9607. https://doi.org/10.1039/C0JM00616E

M. W. Hsiao, R. R. Adžić, E. B. Yeager, Journal of the Electrochemical Society 143(3) (1996) 759-767. https://doi.org/10.1149/1.1836536

G. Kokkinidis, J. M. Leger, C. Lamy, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 242(1-2) (1988) 221-242. https://doi.org/10.1016/0022-0728(88)80253-5

Y. Kim, K. Giribabu, J. G. Kim, J. B. Lee, W. G. Hong, Y. S. Huh, H. J. Kim, ACS Sustainable Chemistry Engineering 7(4) (2019) 4049-4102. https://doi.org/10.1021/acssuschemeng.8b05603

M. M. Rahman, Microchemical Journal 157 (2020) 104945. https://doi.org/10.1016/j.microc.2020.104945

R. Devasenathipathy, V. Mani, S. M. Chen, K. Manibalan, S. T. Huang, International Journal of Electrochemical Science 10 (2015) 1384-1392.

A. Sinhamahapatra, D. Bhattacharjya, J.-S. Yu, RSC Advances 5 (2015) 37721-37728. https://doi.org/10.1039/C5RA06286A

L. Chu, L. Han, X. Zhang, Journal of Applied Electrochemistry 41(6) (2011) 687-694. https://doi.org/10.1007/s10800-011-0281-4

T. Lupua, C. Lete, M. Marin, N. Totir, P. C. Balaure, Electrochimica Acta 54(7) (2009) 1932-1938. https://doi.org/10.1016/j.electacta.2008.07.051

A. Arvinte, M. Mahosenaho, M. Pinteala, A.-M. Sesay, V. Virtanen, Microchimica Acta 174 (2011) 337-343. https://doi.org/10.1007/s00604-011-0628-x

A. T. E. Vilian, S.R. Choe, K. Giribabu, S. C. Jang, C. Roh, Y. S. Huh, Y.-K. Han, Journal of Hazardous Materials 333 (2017) 54-62 https://doi.org/10.1016/j.jhazmat.2017.03.015.

K.-Y. Hwa, T. S. K. Sharma, A. Ganguly, Inorganic Chemistry Frontiers 7 (2020) 1981-1994. https://doi.org/10.1039/D0QI00006J

T. Jeyapragasam, J. Meena Devi, V. Ganesh, Ionics 24 (2018) 4033-4041. https://doi.org/10.1007/s11581-018-2538-y

S. Scarano, P. Palladino, E. Pascale, A. Brittoli, M. Minunni, Microchimica Acta 186 (2019) 146. https://doi.org/10.1007/s00604-019-3259-2

S. Yaripour, A. Mohammadi, S. Mousavi, I. Esfanjani, N. Arabzadeh, S. Mozaffari, Pharmaceutical Sciences 25(1) (2019) 57-64. https://doi.org/10.15171/PS.2019.9

N. Xiao, S. G. Liu, S. Mo, N. Li, Y. J. Ju, Y. Ling, N. B. Li, H. Q. Luo, Talanta 184 (2018) 184-192. https://doi.org/10.1016/j.talanta.2018.02.114

F. Qu, P. Chen, S. Y. Zhu, J. M. You, Spectrochimica Acta Part A 171 (2017) 449-453. https://doi.org/10.1016/j.saa.2016.08.043

A. S. Miletić, E. T. Pecev-Marinković, Z. M. Grahovac, A. N. Pavlović, S. B. Tošić, I. D. Rašić Mišić, Journal of Analytical Chemistry 74 (2019) 521-527. https://doi.org/10.1134/S1061934819060066

A. J. Bard, L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications, 2nd ed., John Wiley and Sons, New York. 2001.

D. K. Gosser, Jr., Cyclic Voltammetry; Simulation and Analysis of Reaction Mechanisms, VCH, New York, 1993.

N. Hareesha, J. G. Manjunatha, Journal of Electroanalytical Chemistry 878 (2020) 114533. https://doi.org/10.1016/j.jelechem.2020.114533

Q. He, Y. Tian, Y. Wu, J. Liu, G. Li, P. Deng, D. Chen, Nanomaterials 9(3) (2019) 429. http://dx.doi.org/10.3390/nano9030429

D. Nkosi, J. Pillay, K. I. Ozoemena, K. Nouneh, M. Oyama, Physical Chemistry Chemical Physics 12(3) (2010) 604-613. https://doi.org/10.1039/B918754E

N. Hareesha, J. G. Manjunatha, Journal of the Iranian Chemical Society 17 (2020) 1507-1519. https://doi.org/10.1007/s13738-020-01876-4

M. M. Charithra, J. G. Manjunatha, Journal of Electrochemical Science and Engineering 10(1) (2020) 29-40. http://dx.doi.org/10.5599/jese.717

Published
24-05-2021
Section
Electrochemical Science