A simple and fast method to detect freebase cocaine in artificial saliva by square wave voltammetry (SWV) using carbon paste electrode
DOI:
https://doi.org/10.5599/jese.849Keywords:
Forensic chemistry, cocaine, saliva, square wave voltammetryAbstract
The consequences of consuming and commercializing illicit drugs including cocaine, constitute a serious problem for authorities and the whole society. Cocaine is usually identified in the laboratory conditions by chromatographic or spectroscopic methods. Electrochemical techniques have also gained prominence because they are fast and easy to use, have many applications, and provide reproducible and reliable results. Therefore, in the present study, a voltammetric method was developed to detect freebase cocaine using carbon paste electrode and methanol as the main cocaine solvent. The developed method was applied to detect cocaine in the artificial saliva by the square wave voltammetry (SWV). The current values increased linearly with the concentration of cocaine, which afforded construction of the analytical curve. The limit of detection (LoD) and the limit of quantifycation (LoQ) were determined as 0.90 µg/mL and 2.41 µg/mL, respectively. For comparison purposes, HPLC-DAD chromatographic method was also applied to detect cocaine. The corresponding analytical curve gave LoD = 0.043 µg/mL and LoQ = 0.130 µg/mL. Although showing better analytical results, HPLC-DAD method could not detect cocaine in saliva samples without previous treatment, what makes the electrochemical method much more attractive for this type of detection.
Downloads
References
R. A. Goldstein, C. DesLauriers, A. Burda, H. Johnson-Arbor, Seminars in Diagnostic Pathology 26(1) (2009) 10–17.
C. M. Shanti, C. E. Lucas, Critical Care Medicine 31(6) (2003) 1851–1859.
N. G. Oliveira, R. J Dinis-Oliveira, Archives of Toxicology 92(10) (2018) 2987–3006.
V. Pavlova, V. Mirčeski, Š. Komorsky-Lovrić, S. Petrovska-Jovanović, B. Mitrevski, Analytica Chimica Acta 512(1) (2004) 49–56.
R. A. Jufer, A. Wstadik, S. L. Walsh, B. S. Levine, E. J. Cone, Journal of Analytical Toxicology 24 (2000) 467–477.
W. M. Bosker, R. A. Huestis, Clinical Chemistry 55(11) (2009) 1910–1931.
K. R. Allen, Annals of Clinical Biochemistry 48 (2011) 531–541.
D. V. M. Souza, F. V. Pereira, C. C. Nascentes, J. S. Moreira, V. H. M. Boratto, R. M. Orlando, Talanta 208 (2020). 120353. https://doi.org/10.1016/j.talanta.2019.120353
Š. Komorsky-Lovrić, S. Gagić, R. Penovski, Analytica Chimica Acta 389(1-3) (1999) 219–223.
Š. Komorsky-Lovrić, I. Galić, R. Penovski, Electroanalysis 11(2) (1999) 120–123.
L. Poltorack, E. J. R. Sudhölter, M. de Puit, Trends in Analytical Chemistry 114 (2019) 48–55.
E. N. Oiye, N. B. de Figueiredo, J. F. de Andrade, H. M. Tristão, M. F de Oliveira, Forensic Science International 192(1-3) (2009) 94–97.
V. Vukojević, S. Djurdjic, Ľ. Švorc, T. Ćirković Veličković, J. J. Mutić, D.M. Stanković, Food Analytical Methods 11(9) (2018) 2590–2596.
O. Sarakhman, S. Pysarevska, L. Dubenska, D. M. Stanković, P. Otřísal, A. Planková, K. Kianičková, Ľ. Švorc, Journal of the Eletrochemical Society 166(4) (2019) B219–B226.
M. T. F. Abedul, J. R. B. Rodriguez, A. C. García, P. T. Blanco, Electronalysis 3(4-5) (1991) 409–412.
M. Dronova, E. Smolianitski, O. Lev, Analytical Chemistry 88(8) (2016) 4487– 4494.
J. M. Freitas, D. L. O. Ramos, R. M. F. Souza, T. R. L. C. Paixão, M. H. P. Santana, R. A. A. Muñoz, E.M. Richter, Sensors and Actuators B 243 (2017) 557–565.
A. Warner, A. B. Norman, Therapeutic Drug Monitoring 22(3) (2000) 266–270.
B. J. Sanghavi, A. K. Srivastava, Eletrochimica Acta 55 (2010) 8638–8648.
E. Molaakbari, A. Mostafavi, H. Beitollahi, Sensors and Actuators B: Chemical 208 (2015) 195–203.
G. A. M. Mersal, Food Analytical Methods 5 (2012) 520–529.
R. L. McCreery, Chemical Reviews 108 (2008) 2646–2687.
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.