Chemisorption as the essential step in electrochemical energy conversion - Review


  • Ana S. Dobrota University of Belgrade – Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade
  • Igor A. Pašti University of Belgrade – Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade



Adsorption, reactivity trends, electrocatalysis, electrochemical power sources


Growing world population and energy demands have placed energy conversion and storage into the very centre of modern research. Electrochemical energy conversion systems including batteries, fuel cells, and supercapacitors, are widely considered as the next generation power sources. Even though they rely on different mechanisms of energy conversion and storage, fundamentally these are all electrochemical cells, operating through processes taking place at the solid/liquid interfaces, i.e. electrodes. Considering the interfacial nature of electrodes, it is clear that adsorption phenomena cannot be neglected when considering electrochemical systems. More than that, they are of crucial importance for electrochemical processes and represent an essential step in electrochemical energy conversion. In this contribution we give an overview of the phenomena underlying the operation of sustainable metal-ion batteries, fuel cells and supercapacitors, ranging from electrocatalytic reactions and pseudo-faradaic processes to purely adsorptive processes, emphasizing the types, roles and significance of chemisorption. We review experimental and theoretical methods which can provide information about chemisorption in the mentioned systems, stressing the importance of combining both approaches.


Download data is not yet available.


J. G. Calvert, Pure and Applied Chemistry 62 (1990) 2167–2219.

D. H. Everett, Pure and Applied Chemistry 31 (1972) 577–638.

R. L. Burwell, Advances in Catalysis 26 (1977) 351–392.

B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer Science & Business Media, 1999.

N. M. Marković, P. N. Ross, Surface Science Reports 45 (2002) 117–229.

P. Sabatier, Berichte der Deutchen Chemischen Gesselschaft 44 (1911) 1984–2001.

M. Armand, J.-M. Tarascon, Nature 451 (2008) 652–657.

J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chemical Society Reviews 46 (2017) 3529–3614.

D. Aurbach, H. Gizbar, A. Schechter, O. Chusid, H.E. Gottlieb, Y. Gofer, I. Goldberg, Journal of the Electrochemical Society 149 (2002) A115-A121.

J. V. Rani, V. Kanakaiah, T. Dadmal, M. S. Rao, S. Bhavanarushi, Journal of the Electrochemical Society 160 (2013) A1781–A1784.

I.A. Pašti, N. V. Skorodumova, S. V. Mentus, Reaction Kinetics, Mechanisms and Catalysis 115 (2015) 5–32.

A. Bajpai, M. Rajpoot, Journal of Scientific and Industrial Research 58 (1999) 844–860.

A. Nilsson, L.G.M. Pettersson, Surface Science Reports 55 (2004) 49–167.

A. Nilsson, M. Weinelt, T. Wiell, P. Bennich, O. Karis, N. Wassdahl, J. Stöhr, M. G. Samant, Physical Review Letters 78 (1997) 2847–2850.

A. Nilsson, J. Hasselström, A. Föhlisch, O. Karis, L. G. M. Pettersson, M. Nyberg, L. Triguero, Journal of Electron Spectroscopy and Related Phenomena 110–111 (2000) 15–39.

H. Gross, C. T. Campbell, D. A. King, Surface Science 572 (2004) 179–190.

P. Hohenberg, W. Kohn, Physical Review 136 (1964) B864–B871.

W. Kohn, Fundamentals of density functional theory, in: Density Funct. Theory Appl., Springer Berlin Heidelberg, 1998: pp. 1–7.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, Journal of Physics: Condensed Matter 14 (2002) 2717–2744.

D. W. Boukhvalov, Y. Wu, Y. Hao, J. Geng, M. Charlton, S. Chen, Y. Ren, H. Ji, H. Li, D. W. Boukhvalov, R. D. Piner, C. W. Bielawski, R. S. Ruoff, K. S. Novoselov, L. A. Ponomarenko, RSC Advances 3 (2013) 7150.

J. Dai, J. Yuan, Physical Review B 81 (2010) 165414.

E. Santos, P. Quaino, W. Schmickler, Physical Chemistry Chemical Physics 14 (2012) 11224–11233.

J. Greeley, J. Rossmeisl, Zeitschrift Für Physikalische Chemie 221 (2007) 1209–1220.

M. E. Björketun, A. S. Bondarenko, B. L. Abrams, I. Chorkendorff, J. Rossmeisl, Physical Chemistry Chemical Physics 12 (2010) 10536.

J. K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Proceedings of the National Academy of Sciences of the United States of America 108 (2011) 937–43.

B. Hammer, J.K. Norskov, Nature 376 (1995) 238–240.

V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Science 315 (2007) 493–497.

F. H. B. Lima, J. Zhang, M. H. Shao, K. Sasaki, M. B. Vukmirovic, E. A. Ticianelli, R. R. Adzic, Journal of Physical Chemistry C 111 (2007) 404–410.

A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, J. K. Nørskov, Journal of Molecular Catalysis A: Chemical 115 (1997) 421–429.

L. G. M. Pettersson, A. Nilsson, Topics in Catalysis 57 (2014) 2–13.

A. Nilsson, L. G. M. Pettersson, J. K. Nørskov, Chemical Bonding at Surfaces and Interfaces, Elsevier, Amsterdam, 2008.

J. S. Dewar, Bulletin de La Societe Chimique de France 18 (1951) C71–C79.

J. Chatt, L. A. Duncanson, Journal of the Chemical Society (Resumed) (1953) 2939–2947.

T. Engel, G. Ertl, Advances in Catalysis 28 (1979) 1–78.

B. L. M. Hendriksen, J. W. M. Frenken, Physical Review Letters 89 (2002) 046101.

B. L. M. Hendriksen, S. C. Bobaru, J. W. M. Frenken, Surface Science 552 (2004) 229–242.

D. Vasić, Z. Ristanović, I. Pašti, S. Mentus, Russian Journal of Physical Chemistry A 85 (2011) 2373–2379.

S. Trasatti, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 39 (1972) 163–184.

B. E. Conway, Progress in Surface Science 49 (1995) 331–452.

D. Zhao, Q. Shao, Y. Zhang, X. Huang, Nanoscale 10 (2018) 22787–22791.

P. Quaino, F. Juarez, E. Santos, W. Schmickler, Beilstein Journal of Nanotechnology 5 (2014) 846–854.

W. Sheng, M. Myint, J. G. Chen, Y. Yan, D. M. Kolb, R. J. Behm, I. Chorkendorff, J. K. Norskov, Energy & Environmental Science 6 (2013) 1509.

F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T. R. Munter, P. G. Moses, E. Skúlason, T. Bligaard, J.K. Nørskov, Physical Review Letters 99 (2007) 016105.

I. A. Pašti, E. Fako, A. S. Dobrota, N. López, N. V. Skorodumova, S. V. Mentus, ACS Catalysis 9 (2019) 3467–3481.

E. Fako, A. S. Dobrota, I. A. Pašti, N. López, S. V. Mentus, N. V. Skorodumova, Physical Chemistry Chemical Physics 20 (2018) 1524–1530.

M. Amft, N. V. Skorodumova, Physical Review B - Condensed Matter and Materials Physics 81 (2010) 195443.

B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J. M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307 (2005) 403–407.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 407 (2000) 496–499.

G. F. Fine, L. M. Cavanagh, A. Afonja, R. Binions, Sensors 10 (2010) 5469–5502.

T. Lei, C. Ouyang, W. Tang, L.-F. Li, L.-S. Zhou, Surface and Coatings Technology 204 (2010) 3798–3803.

M. Matsuoka, Japanese Journal of Applied Physics 10 (1971) 736–746.

M. Ménétrey, A. Markovits, C. Minot, Surface Science 566–568 (2004) 693–697.

I. A. Pašti, M. Baljozović, N. V Skorodumova, Surface Science 632 (2015) 39–49.

I. A. Pašti, N. V. Skorodumova, Physical Chemistry Chemical Physics 18 (2016) 426–435.

S. Fernandez, A. Markovits, C. Minot, The Journal of Physical Chemistry C 112 (2008) 16491–16496.

C.A . Scamehorn, N. M. Harrison, M. I. McCarthy, The Journal of Chemical Physics 101 (1994) 1547–1554.

R. Nada, A.C. Hess, C. Pisani, Surface Science 336 (1995) 353–361.

M. J. Stirniman, C. Huang, R. Scott Smith, S. A. Joyce, B. D. Kay, The Journal of Chemical Physics 105 (1996) 1295–1298.

G. Pacchioni, N. Rösch, The Journal of Chemical Physics 104 (1996) 7329–7337.

P. A. Žguns, M. Wessel, N. V. Skorodumova, RSC Advances 5 (2015) 94436–94445.

H. J. Zhai, J. Döbler, J. Sauer, L. S. Wang, Journal of the American Chemical Society 129 (2007) 13270–13276.

H. J. Freund, G. Pacchioni, Chemical Society Reviews 37 (2008) 2224–2242.

P. Broqvist, I. Panas, H. Persson, Journal of Catalysis 210 (2002) 198–206.

M. Aryanpour, A. Khetan, H. Pitsch, ACS Catalysis 3 (2013) 1253–1262.

V. Shapovalov, H. Metiu, Journal of Catalysis 245 (2007) 205–214.

R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 334 (2011) 1256–1260.

N. Danilovic, R. Subbaraman, D. Strmcnik, K.-C. Chang, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, Angewandte Chemie International Edition 51 (2012) 12495–12498.

M. Vasić, M. Čebela, I. Pašti, L. Amaral, R. Hercigonja, D. M. F. Santos, B. Šljukić, Electrochimica Acta 259 (2018) 882–892.

K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, Science 264 (1994) 556–558.

I. A. Pašti, A. Jovanović, A. S. Dobrota, S. V. Mentus, B. Johansson, N. V. Skorodumova, Applied Surface Science 436 (2018) 433–440.

S. Casolo, O. M. Løvvik, R. Martinazzo, G. F. Tantardini, The Journal of Chemical Physics 130 (2009) 054704.

P. A. Denis, F. Iribarne, Journal of Molecular Structure: THEOCHEM 907 (2009) 93–103.

A. S. Dobrota, I. A. Pašti, S. V. Mentus, N. V. Skorodumova, Physical Chemistry Chemical Physics 18 (2016) 6580–6586.

A. S. Dobrota, I. A. Pašti, N. V. Skorodumova, Electrochimica Acta 176 (2015) 1092–1099.

A. S. Dobrota, S. Gutić, A. Kalijadis, M. Baljozović, S. V. Mentus, N. V. Skorodumova, I. A. Pašti, RSC Advances 6 (2016) 57910–57919.

A. S. Dobrota, I. A. Pašti, S. V. Mentus, N. V. Skorodumova, Physical Chemistry Chemical Physics 19 (2017) 8530–8540.

Y.-L. Song, L.-L. Yin, J. Zhang, P. Hu, X.-Q. Gong, G. Lu, Surface Science 618 (2013) 140–147.

Y. Xu, R.B. Getman, W. A. Shelton, W. F. Schneider, Physical Chemistry Chemical Physics 10 (2008) 6009.

X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Accounts of Chemical Research 46 (2013) 1740–1748.



How to Cite

Dobrota, A. S., & Pašti, I. A. (2020). Chemisorption as the essential step in electrochemical energy conversion - Review. Journal of Electrochemical Science and Engineering, 10(2), 141–159.



7th RSE SEE & 8th Kurt Schwabe symposium Special Issue