Advances in understanding Li battery mechanisms using impedance spectroscopy - Review
DOI:
https://doi.org/10.5599/jese.734Keywords:
Lithium ion batteries, lithium sulfur batteries, transmission line model, porous electrode model, dendrites diffusion, electrochemical reactionAbstract
The use of impedance spectroscopy in the field of modern batteries is demonstrated on three systems: lithium ion batteries represented by lithium iron phosphate (LFP) and lithium cobalt oxide (LCO) electrodes, a porous carbon cathode in contact with polysulfides and a metallic lithium anode exhibiting dendritic growth. In all cases, systematic experiments are shown where the type and composition of electrochemical cell is varied in order to identify the main processes contributing to the impedance response. The experiments are upgraded with appropriate models, using mainly the transmission line approach. The approach allows establishment of clear correlations between the composition and morphology of electrodes on one hand and the measured impedance features on the other. As the transmission line models are based on the use of physically well-defined elements, the approach allows a quantitative description of the main processes (diffusion, reaction, migration across films and contacts) taking place in modern battery electrodes.
Downloads
References
M. Winter, R. J. Brodd, Chemical Reviews 104 (2004) 4245–4270.
B. Scrosati, Journal of Solid State Electrochemistry 15 (2011) 1623–1630.
M. Gaberscek, J. Moskon, B. Erjavec, R. Dominko, J. Jamnik, Electrochemical and Solid-State Letters 11 (2008) A170-A174.
J.-M. Atebamba, J. Moskon, S. Pejovnik, and M. Gaberscek, Journal of the Electrochemical Society 157 (2010) A1218-A1228.
M. Doyle, J. P. Meyers, and J. Newman Journal of the Electrochemical Society 147 (2000) 99-110.
J. P. Meyers, M. Doyle, R. M. Darling, and J. Newman, Journal of the Electrochemical Society 147 (2000) 2930-2940.
B. C. Han, A. Van der Ven, D. Morgan, and G. Ceder, Electrochimica Acta 49 (2004) 4691-4699.
Y.-S. Su, A. Manthiram, Nature Communications 3 (2012) article number: 1166.
X. Ji, K. T. Lee, L. F. Nazar, Nature Materials 8 (2009) 500–506.
L. Wang, Y. Wang, Y. Xia, Energy & Environmental Science 8 (2015) 1551–1558.
S. Drvaric Talian, J. Moskon, R. Dominko, M. Gaberscek, ACS Applied Materials & Interfaces 9 (2017) 29760-29770.
M. Adamic, S. Drvaric Talian, A.R. Sinigoj, I. Humar, J. Moskon, M. Gaberscek, Journal of the Electrochemical Society 166 (2019) A5045-A5053.
S. Devan, V. R. Subramanian, R. E. White, Journal of the Electrochemical Society 151 (2004) A905-A913.
J. Huang, J. Zhang, Journal of the Electrochemical Society 163 (2016) A1983-A2000.
S. Drvarič Talian, Jože Moškon, R. Dominko, M. Gaberšček, Electrochimica Acta 302 (2019) 169-179.
J. Bisquert, Physical Chemistry Chemical Physics 2 (2000) 4185-4192.
E. Peled, in Lithium Batteries, J. Gabano, Editor, Academic Press, 1983.
E. Peled, Journal of the Electrochemical Society 126 (1979) 2047-2051.
X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chemical Reviews 117 (2017) 10403–10473.
E. Peled, S. Menkin, Journal of the Electrochemical Society 164 (2017) A1703–A1719.
D. Aurbach, Y. Ein‐Ely, A. Zaban, Journal of the Electrochemical Society 141 (1994) L1-L3.
D. Aurbach, E. Zinigrad, Y. Cohen, H. A. Teller, Solid State Ionics 148 (2002) 405–416.
S. Drvarič Talian, J. Bobnar, A. R. Sinigoj, I. Humar, M. Gaberšček, Journal of Physical Chemistry C, 123 (2019) 27997-28007.
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.