Optimization of electrochemical parameters in microbial fuel cell system based on Fuzzy-PID and CMAC neural network

Authors

  • Chengcai Fu School of Electrical Engineering and Automation, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353 and School of Mechanical Electronic & Information Engineering and University of Mining & Technology, Beijing 100083
  • Fengying Ma School of Electrical Engineering and Automation, Qilu University of Technology ,Shandong Academy of Sciences, Jinan 250353

DOI:

https://doi.org/10.5599/jese.636

Keywords:

Microbial fuel cells, electrochemical parameters, fuzzy optional algorithm, CMAC neural network

Abstract

Due to the extensive application prospects on wastewater treatment and new energy development, microbial fuel cells (MFCs) have gained more and more attention by many scholars all over the world. The bioelectrochemical reaction in MFC system is highly complex, serious nonlinear and time-delay dynamic process, in which the optimal control of electrochemical parameters is still a considerable challenge. A new optimal control scheme for MFC system which combines proportional integral derivative (PID) controller with parameters fuzzy optional algorithm and cerebellar model articulation controller (CMAC) neural network was proposed. The simulation results demonstrate that the proposed control scheme has rapider response, better control effect and stronger anti-interference ability than Fuzzy PID controller by taking constant voltage output of MFC under the different load disturbances as example.

Downloads

Download data is not yet available.

References

K. S. Chirag, B. N. Yagnik, Research Journal of Biotechnology 8 (2013) 84-90.

M. H. Zhou, H. Y.Wang, J. D. Hassett, T. Y. Gu, Journal of Chemical Technology & Biotechnology 88 (2013) 508-518.

J. M. Luo, J. Yang, H. H. He, J. Tao, Z. Li, M. Wang, M. H. Zhou, Bioresource Technology 139 (2013) 141-148.

W. L.Yang, K. Y. Kim, P. E. Saikaly, B. E. Logan, Energy & Environmental Science 5 (2017) 1025-1033.

L. Pablo, S. Andrew, G. John, L. Ioannis, Physical Chemistry Chemical Physics 15 (2013) 2278-2281.

A. Gil-Carrera, A. Escapa, R. Moreno, R. Moran, Journal of Environmental Management 122 (2013) 1-7.

A. Schievanoa, A. Colomboa, M. Grattierib, S. P. Trasattic, A. Liberaled, P. Tremoladae, C. Pinof, P. Cristianig, Journal of Power Sources 340 (2017) 80-88.

Y. Zeng, , Y. F.Choo, B. H. Kim, P. Wu, Journal of Power Sources 195 (2010) 79-89.

L. Fan, C. Li and K. Boshnakov, Pakistan Journal of Pharmaceutical Sciences 27 (2014) 685-690.

M. X. Yan, L. P. Fan, International Journal of Electrochemical Science 8 (2013) 3321-3332.

A. M. An, Y. L. Liu, H. S. Zhang, C. D. Zheng, J. Fu, Journal of Chemical Engineering 68 (2017) 1090-1098.

J. K. Liu,Advanced PID Control and MATLAB Simulation, Electronic Industry Press, Beijing, China,2007, p.183.

C. M. Lin, H. Y. Li, Nonlinear Analysis-Real World Applications 14 (2013) 206-223.

D. Z. Xu, N. Ji, Y. Tang, International Journal of Energy and Power 4 (2015) 92-97.

C. Y. Jia, X. Y. Shan, Y. C. Cui, T. Bai, F. J. Cui, Journal of Iron and Steel Research 20 (2013) 17-22.

Downloads

Published

28-02-2019

How to Cite

Fu, C., & Ma, F. (2019). Optimization of electrochemical parameters in microbial fuel cell system based on Fuzzy-PID and CMAC neural network. Journal of Electrochemical Science and Engineering, 9(2), 135–142. https://doi.org/10.5599/jese.636

Issue

Section

Bioelectrochemistry & Fuel Cells