A sensitive electrochemical sensor based on polypyrrole/electrochemically reduced graphene oxide for the determination of imidacloprid

  • Chenglong Chen School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094
  • Zhen Han School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094
  • Wu Lei School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094
  • Yong Ding School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094
  • Jingjing Lv School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094
  • Mingzhu Xia School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094
  • Fengyun Wang School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094
  • Qingli Hao School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094
Keywords: Electro-polymerization, modified electrode, imidacloprid insecticide, electrochemical behavior, actual samples

Abstract

The glassy carbon electrode (GCE) was modified by electrochemically reduced graphene oxide (ERGO) and polypyrrole (PPy) prepared by simple cyclic voltammetry (CV) electropoly­merization. The PPy/ERGO modified electrode (PPy/ERGO/GCE) was used as a platform of electrochemical sensor to detect imidacloprid (IMI) insecticide. CV and differential pulse voltammetry (DPV) were chosen as the methods to investigate of the electrochemical behavior of IMI on PPy/ERGO/GCE surface. Scanning electron microscopy (SEM) and Raman spectra were utilized to describe the morphology and structure of the modified electrode. Experimental parameters were optimized, such as the number of polymerization cycles, scan rate and the pH value of electrolyte. Under the optimized conditions, when the concentration of IMI was in the range of 1-10 μM and 10-60 μM, the increase of reduction peak current was linear with the concentration of IMI, and the low detection limit was found to be 0.18 μM (S/N = 3). Results showed that PPy/ERGO/GCE demonstrated satisfactory reproducibility and stability, and has great potential in actual sample testing.

Downloads

Download data is not yet available.

References

A. Brandt, A. Gorenflo, R. Siede, M. Meixner, R. Büchler, Journal of Insect Physiology 86 (2016) 40-47

R. Ramachandran, V. Mani, S. M. Chen, G. G. Kumar, M. Govindasamy, International Journal of Electrochemical Science 10 (2015) 691-700

K. L. Klarich, N. C. Pflug, E. M. Dewald, M. L. Hladik, D. W. Kolpin, D. M. Cwiertny, G. H. Lefevre, Environmental Science & Technology 4 (2017) 168-173

H. Obana, M. Okihashi, K. Akutsu, Y. Kitagawa, S. Hori, Journal of Agricultural and Food Chemistry 50 (2002) 4464-4467

A. Niaz, R. A. Sial, M. Yaseen, G. A. Mand, M. H. Javed, E. Ahmad, R. Ahmad, M. Rahim, Journal of Animal & Plant Sciences 26 (2016) 170-176

J. Cheng, M. L. Wang, S. H. Zhu, J. W. Wen, L. Ding, L. B. Wang, Journal of Food Safety & Quality 2016 1 (2016) 131-137

M. A. Farooqi, MansoorulHasan, M. A. Sabri, N. Javed, Pakistan Journal of Zoology 47 (2015) 965-970

W. Liang, J. Wang, X. Zang, W. Dong, C. Wang, Z. Wang, Journal of Chromatography A 1491 (2017) 9

V. Guzsvany, Z. Papp, J. Zbiljic, O. Vajdle, M. Rodic, Molecules 16 (2011) 4451-4466

A. Kumaravel, M. Chandrasekaran, Sensors and Actuators B: Chemical 158 (2011) 319-326

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 442 (2006) 282

C. G. Lin, J. Hu, Y. F. Song, Advances in Inorganic Chemistry 8 (2017) 776-789

V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, R. Zboril, Chemical Reviews 116 (2016) 5464

T. Szabó, E. Tombácz, E. Illés, I. Dékány, Carbon 44 (2006) 537-545

G. Yang, G. Zhang, P. Sheng, F. Sun, W. Xu, D. Zhang, Journal of Materials Chemistry 22 (2012) 4391-4395

L. G. Guex, B. Sacchi, K. F. Peuvot, R. L. Andersson, A. M. Pourrahimi, V. Ström, S. Farris, R. T. Olsson, Nanoscale 9 (2017) 9562-9571

M. A. Raj, S. A. John, Journal of Physical Chemistry C 117 (2016) 4326

C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, T. A. P. Rocha-Santos, TRAC Trends in Analytical Chemistry 91 (2017) 53-66

M. Gao, Y. Xu, X. Wang, Y. Sang, S. Wang, Electroanalysis 28 (2016) 1377-1382

S. Y. Toh, K. S. Loh, S. K. Kamarudin, R. W. D. Wan, Chemical Engineering Journal 251 (2014) 422-434

S. C. Rasmussen, Bulletin for the History of Chemistry 40 (2015) 45-55

K. L. Konkol, R. L. Schwiderski, S. C. Rasmussen, Materials 9 (2016) 404

A. Turco, S. Corvaglia, E. Mazzotta, Biosensors & Bioelectronics 63 (2015) 240-247

Y. Li, H. Ban, M. Yang, Sensors & Actuators B: Chemical 224 (2016) 449-457

W. Lei, Q. Wu, W. Si, Z. Gu, Y. Zhang, J. Deng, Q. Hao, Sensors and Actuators B: Chemical 183 (2013) 102-109

H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Nanoscale 2 (2010) 2164-2170

S. Dhibar, C. K. Das, Journal of Applied Polymer Science 134 (2017) 16

R. Rong, H. Zhao, X. Gan, S. Chen, X. Quan, Nano 12 (2016) 1750008

X. Sheng, D. Xie, W. Cai, X. Zhang, Z. Li, H. Zhang, Industrial & Engineering Chemistry Research 54 (2015) 649-658

C. Bora, S. K. Dolui, Polymer 53 (2012) 923-932

W. Si, W. Lei, Y. Zhang, M. Xia, F. Wang, Q. Hao, Electrochimica Acta 85 (2012) 295-301

M. R. Majidi, S. Ghaderi, Journal of Electroanalytical Chemistry 792 (2017) 46-53

L. Kong, X. Jiang, Y. Zeng, T. Zhou, G. Shi, Sensors and Actuators B: Chemical 185 (2013) 424-431

M. Chen, Y. Meng, W. Zhang, J. Zhou, J. Xie, G. Diao, Electrochimica Acta 108 (2013) 1-9

W. Lei, Z. Han, W. Si, Q. Hao, Y. Zhang, M. Xia, F. Wang, ChemElectroChem 1 (2014) 1063-1067

Published
06-05-2019
Section
Electrochemical Science