Electrochemical behaviour of poly(3,4-ethylenedioxytiophene) modified glassy carbon electrodes after overoxidation − the influence of the substrate on the charge transfer resistance

Authors

  • Dora Zalka Institute of Chemistry, Laboratory of Electrochemistry and Electroanalytical Chemistry, Eötvös Loránd University, Pázmány P. s. 1/A, H-1117 Budapest http://orcid.org/0000-0001-6704-2860
  • Soma Vesztergom Institute of Chemistry, Laboratory of Electrochemistry and Electroanalytical Chemistry, Eötvös Loránd University, Pázmány P. s. 1/A, H-1117 Budapest
  • Mária Ujvári Institute of Chemistry, Laboratory of Electrochemistry and Electroanalytical Chemistry, Eötvös Loránd University, Pázmány P. s. 1/A, H-1117 Budapest
  • Gyözö G. Láng Institute of Chemistry, Laboratory of Electrochemistry and Electroanalytical Chemistry, Eötvös Loránd University, Pázmány P. s. 1/A, H-1117 Budapest

DOI:

https://doi.org/10.5599/jese.508

Keywords:

Non-stationary system, 4-dimensional analysis method, substrate-polymer interaction, oxidation of glassy carbon

Abstract

Time dependence of the electrochemical impedance of an overoxidized glassy carbon|poly(3,4-ethylenedioxytiophene) (PEDOT)|0.1 mol·dm-3 sulfuric acid (aq.) elec­trode has been investigated. To follow the changes occurring at the film/substrate interface after the overoxidation procedure, successive impedance measurements were carried out. Although the system is intrinsically nonstationary, the charge transfer resis­tance (Rct) cor­res­ponding to different time instants could be determined by using the so-called 4-dimensional analysis method. The same post-experimental mathematic­cal/ana­lytical procedure could be used also for the estimation of the charge transfer resistance corresponding to the time instant just after overoxidation of the PEDOT film. The increase of the charge transfer resistance of the overoxidized system with respect to that of the pristine electrode suggests that during overoxidation the electrochemical activity of the film decreases and the charge transfer process at the metal/film interface beco­mes more hindered. After the overoxidation procedure, when the electrode potential was held in the “stability region” (at E = 0.4 V vs. SSCE in the present case) the Rct decre­ased continuously with experiment time to a value somewhat higher than that of the pristine electrode. By comparing the properties of the GC|PEDOT|0.1 M H2SO4 and the Au|PEDOT|0.1 M H2SO4 electrodes a possible mechanistic explanation for the observed behavior has been proposed. This is based on the assumption that in the case of the GC|PEDOT|0.1 M H2SO4 electrode two processes may occur simultaneously during the impedance measurements: (a) reduction of the oxidized surface of the GC substrate, including the reduction of the oxygen-containing surface functionalities and (b) read­sorption of the polymer chains (polymer chain ends) on the surface.

Downloads

Download data is not yet available.

References

C. Kvarnström, Poly(thiophene), in: Electrochemical Dictionary, 2nd edn., A. J. Bard, G. Inzelt, F. Scholz (Eds.), Springer, Heidelberg (2012).

J. Bobacka, A. Lewenstam, A. Ivaska, J. Electroanal. Chem. 489 (2000) 17–27.

H. Yamato, M. Ohwa, W. Wernet, J. Electroanal. Chem. 397 (1995) 163–170.

N. Sakmeche, S. Aeiyach, J. J. Aaron, M. Jouini, J. C. Lacroix, P. C. Lacaze, Langmuir 15 (1999) 2566–2574.

A. Zykwinska, W. Domagala, B. Pilawa, M. Lapkowski, Electrochim. Acta 50 (2005) 1625–1633.

M. Ujvári, M. Takács, S. Vesztergom, F. Bazsó, F. Ujhelyi, G. G. Láng, J. Solid State Electrochem. 15 (2011) 2341–2349.

G. G. Láng, M. Ujvári, F. Bazsó, S. Vesztergom, F. Ujhelyi, Electrochim. Acta 73 (2012) 59–69.

M. Ujvári, J. Gubicza, V. Kondratiev, K. J. Szekeres, G. G. Láng, J. Solid State Electrochem. 19 (2015) 1247–1252.

M. Ujvari, G. G. Láng, S. Vesztergom, K. J. Szekeres, N. Kovács, J. Gubicza, J. Electrochem. Sci. Eng. 6 (2016) 77-89.

A. Zykwinska, W. Domagala, A. Czardybon, B. Pilawa, M. Lapkowski, Electrochim. Acta 51 (2006) 2135–2144.

X. Du, Z. Wang, Electrochim. Acta 48 (2003) 1713–1717.

G. G. Láng, M. Ujvári, S. Vesztergom, V. Kondratiev, J. Gubicza, K. J. Szekeres, Zeitschrift fur Phys. Chemie 230 (2016) 1281–1302.

G. Inzelt, G. G. Láng, Electrochemical Impedance Spectroscopy (EIS) for Polymer Characterization, Ch. 3, in: Electropolymerization: Concepts, Materials and Applications, S. Cosnier, A. Karyakin (Eds.), Wiley-VCH Verlag GmbH & Co. KGaA,Weinheim, 2010.

G. G. Láng, C. Barbero, Laser techniques for the study of electrode processes, in: Monographs in electrochemistry, F. Scholz (Ed.), Springer, Berlin Heidelberg (2012).

N. Kovács, M. Ujvári, G. G. Láng, P. Broekmann, S. Vesztergom, Instrum. Sci. Technol. 43 (2015) 633–648.

M. Ujvári, D. Zalka, S. Vesztergom, S. Eliseeva, V. Kondratiev, G. G. Láng, Bulg. Chem. Commun. 49 (2017) 106–113.

D. Zalka, N. Kovács, K.J. Szekeres, M. Ujvári, S. Vesztergom, S. Eliseeva, V. Kondratiev, G. G Láng, Electrochim. Acta 247 (2017) 321–332.

Z. Stoynov, B. Savova, J. Electroanal. Chem. 112 (1980) 157–161.

Z. B. Stoynov, B. S. Savova-Stoynov, J. Electroanal. Chem. 183 (1985) 133–144.

B. Savova-Stoynov, Z. B. Stoynov, Electrochim. Acta 37 (1992) 2353–2355.

G. G. Láng, D. Zalka, Physiol. Meas. 39 (2018) 028001(4pp).

V. Horvat-Radošević, K. Kvastek, K. Magdić Košiček, Bulg. Chem. Commun. 49 (2017) 119–127.

W. Poppendieck, K. P. Hoffmann, IFMBE Proc. 22 (2008) 2409–2412.

A. Stoyanova, V. Tsakova, J. Solid State Electrochem. 14 (2010) 1947–1955.

D. Zalka, S. Vesztergom, M. Ujvári, G. G. Láng, 6th Regional Symposium on Electrochemistry - South-East Europe, Balatonkenese, Hungary, 11-15 June, 2017, Book of Abstracts, pp. 103–104.

G. Láng, M. Ujvári, G. Inzelt, Electrochim. Acta 46 (2001) 4159–4175.

P. Melinon, B. Masenelli, From Small Fullerenes to Superlattices: Science and Applications, p.74, CRC Press, Taylor&Francis Group, LLC, Boca Raton (2012).

G. M. Jenkins, K. Kawamura, Nature 231 (1971) 175–176.

P. J. F. Harris, Philos. Mag. 84 (2004) 3159-3167.

R. L. McCreery, in Electroanalytical Chemistry a Series of Advances, ed. A. J. Bard, Marcel Dekker, New York, 1991, vol. 17, p. 221.

B. Šljukić, G. G. Wildgoose, A. Crossley, J. H. Jones, L. Jiang, T. G. J. Jones, R. G. Compton, J. Mater. Chem. 16 (2006) 970–976.

A. Dekanski, J. Stevanović, R. Stevanović, B.Ž. Nikolić, V.M. Jovanović, Carbon 39 (2001) 1195–1205.

Y. Yi, G. Weinberg, M. Prenzel, M. Greiner, S. Heumann, S. Becker, R. Schlögl, Catal. Today 295 (2017) 32–40.

K. Magdić, K. Kvastek, V. Horvat-Radošević, Electrochim. Acta 117 (2014) 310–321.

G. Láng, G. Inzelt, Electrochim. Acta 44 (1999) 2037–2051.

L. D. Burke, P. F. Nugent, Gold Bull. 30 (1997) 43–53.

L. D. Burke, P. F. Nugent, Gold Bull. 31 (1998) 39–50.

Published

15-05-2018

How to Cite

Zalka, D., Vesztergom, S., Ujvári, M., & Láng, G. G. (2018). Electrochemical behaviour of poly(3,4-ethylenedioxytiophene) modified glassy carbon electrodes after overoxidation − the influence of the substrate on the charge transfer resistance. Journal of Electrochemical Science and Engineering, 8(2), 151–162. https://doi.org/10.5599/jese.508

Issue

Section

6th RSE SEE Special Issue