In-depth component distribution in electrodeposited alloys and multilayers

Authors

  • László Péter Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege út 29-33, 1121 Budapest
  • Kálmán Vad Institute of Nuclear Research of the Hungarian Academy of Sciences, Bem tér 18/c, 4026 Debrecen
  • Attila Csik Institute of Nuclear Research of the Hungarian Academy of Sciences, Bem tér 18/c, 4026 Debrecen
  • Rocío Muñíz Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo
  • Lara Lobo Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo
  • Rosario Pereiro Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo
  • SaÅ¡o Å turm Josef Stefan Institute, Ljubljana, Slovenia
  • Kristina Žužek Rožman Josef Stefan Institute, Ljubljana, Slovenia
  • György Molnár Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege út 29-33, 1121 Budapest
  • Katalin Németh Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege út 29-33, 1121 Budapest
  • Katalin Neuróhr Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege út 29-33, 1121 Budapest
  • Krisztina Boros Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege út 29-33, 1121 Budapest
  • Lajos Pogány Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege út 29-33, 1121 Budapest
  • Imre Bakonyi Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege út 29-33, 1121 Budapest

DOI:

https://doi.org/10.5599/jese.480

Keywords:

Alloy formation, near-substrate composition modulation, hydrodynamic conditions, component distribution correlations

Abstract

It is shown in this overview that modern composition depth profiling methods like secondary neutral mass spectroscopy (SNMS) and glow-discharge – time-of-flight mass spectrometry (GD-ToFMS) can be used to gain highly specific composition depth profile information on electrodeposited alloys. In some cases, cross-sectional transmission electron microscopy was also used for gaining complementary information; nevertheless, the basic component distribution derived with each method exhibited the same basic features. When applying the reverse sputtering direction to SNMS analysis, the near-substrate composition evolution can be revealed with unprecedented precision. Results are presented for several specific cases of electrodeposited alloys and mulitlayers. It is shown that upon d.c. plating from an unstirred solution, the preferentially deposited metal accumulates in the near-substrate zone, and the steady-state alloy composition sets in at about 150-200 nm deposit thickness only. If there is more than one preferentially deposited metal in the alloy, the accumulation zones of these metals occur in the order of the deposition preference. This accumulation zone can be eliminated by well-controlled hydrodynamic conditions (like the application of rotating disc electrodes) or by pulse plating where the systematic decrease in the duty cycle provides a gradual transition from a graded to a uniform composition depth profile. The application of composition depth profile measurements enabled detecting the coincidence in the occurrence of some components in the deposits down to the impurity level. This was exemplified by the GD-ToFMS measurements of Ni-Cu/Cu multilayers where all detected impurities accumulated in the Cu layer. The wealth of information obtained by these methods provides a much more detailed picture than the results normally obtained with bulk analysis through conventional integral depth profiling and help in the elucidation of the side reactions taking place during the plating processes.

Downloads

Download data is not yet available.

References

G. Hodes (ed.), Electrochemistry of Nanomaterials, Wiley-VCH, Weinheim, 2001

T. Watanabe, Nano-Plating. Microstructure Control Theory of Plated Film and Data base of Plated Film Microstructure. Elsevier, Amsterdam, 2004

Y. Lin Y, H. S. Nalwa (eds), Handbook of Electrochemical Nanotechnology, American Scientific Publishers, Valencia, CA, USA, 2009

T. Osaka, M. Datta, Y. Shacham-Diamand (eds), Electrochemical Nanotechnologies, Springer, New York, 2010

D. Wei (ed), Electrochemical Nanofabrication, Pan Stanford Publishing, Singapore, 2012

Aliofkhazraei M (ed), Modern Electrochemical Methods in Nano, Surface and Corrosion Science, InTech, Rijeka, Croatia, 2014

M.V. Mirkin, S. Amenia, Nanoelectrochemistry, CRC Press, Boca Raton, Florida, USA, 2015

M. Aliofkhazraei, A.S.H. Makhlouf (eds), Handbook of Nanoelectrochemistry. Springer International Publishing, Cham, Switzerland, 2016

F. Nasirpouri, Electrodeposition of Nanostructured Materials, Springer International Publishing, Cham, Switzerland, 2017

G. H. Cockett, E. S. Spencer-Timms, Journal of the Electrochemical Society 108 (1961) 906-908

W. D. Doyle, Journal of Applied Physics 38 (1967) 1441-1142

R. Girard, Journal of Applied Physics 38 (1967) 1423-1430

E. Beltowska-Lehman, A. Riesekampf, Thin Solid Films 71 (1980) 129-132

J. Gong, S. Riemer, A. Morrone, V. Venkatasamy, M. Kautzky, I. Tabakovic, Journal of the Electrochemical Society 159 (2012) D447-D454

L. Péter, J. Pádár, E. Tóth-Kádár, Á. Cziráki, P. Sóki, L. Pogány, I. Bakonyi, Electrochimica Acta 52 (2007) 3813-3821

V. Weihnacht, L. Péter, J. Tóth, J. Pádár, Z. Kerner, C.M. Schneider, I. Bakonyi, Journal of The Electrochemical Society 150 (2003) C507-C515

A. Bartók, A. Csik, K. Vad, G. Molnár, E. Tóth-Kádár, L. Péter, Journal of the Electrochemical Society 156 (2009) D253-D260

L. Péter, A. Csik, K. Vad, E. Tóth-Kádár, Á. Pekker, G. Molnár, Electrochimica Acta 55 (2010) 4734-4741

K. Neuróhr, A. Csik, K. Vad, A. Bartók, G. Molnár, L. Péter, Journal of Solid State Electrochemistry 15 (2011) 2523-2544

K. Neuróhr, A. Csik, K. Vad, G. Molnár, I. Bakonyi, L. Péter, Electrochimica Acta 103 (2013) 179-187

R. Muñiz, L. Lobo, K. Németh, L. Péter, R. Pereiro, Spectrochimica Acta Part B 135 (2017) 34-41

S. S. Abd El Rehim, S. M. Abe-El Wahaab, O. M. Abdella, Surface Technology 21 (1984) 245-253

V. D. Jović, N. Tošić, Journal of Electroanalytical Chemistry 441 (1998) 69-76

A. C. Hegde,V. R. Rao, Journal for Electrochemistry and Plating Technology, May 2014, paper 3300 (available at https://www.jept.de/?p=3300; DOI: 10.12850/ISSN2196-0267.JEPT3300

H. J. Goldschmidt, M. J. Walker, Journal of Applied Crystallography 2 (1969) 273-281

F. A. Shunk, P. Nash, Journal of Phase Equilibra 8 (1987) 122-124

P. P. Jana, S. Lidin, CrystEngComm 15 (2013) 745-753.

A. Brenner, Electrodeposition of Alloys, Academic Press, New York, 1963, Chapter 5., pp. 75-78,

H. Li, F. Ebrahimi, Materials Science and Engineering A 347 (2003) 93-101

N. Zech, E.J. Podlaha, D. Landolt, Journal of the Electrochemical Society 146 (1999) 2886-2891

N. Zech, E.J. Podlaha, D. Landolt, Journal of the Electrochemical Society 146 (1999) 2892-2900

K. Sasaki, J.B. Talbot, Journal of the Electrochemical Society 142 (1995) 775-782

J. Vaes, J. Fransaer, J.P. Celis, Journal of the Electrochemical Society 149 (2002) C567-C572

Y. Zhuang, E. J. Podlaha, Journal of the Electrochemical Society 147 (2000) 2231-2236

Y. Zhuang, E. J. Podlaha, Journal of the Electrochemical Society 150 (2003) C219-C224

Y. Zhuang, E. J. Podlaha, Journal of the Electrochemical Society 150 (2003) C225-C233

A. Csik, K. Vad , E. Tóth-Kádár, L. Péter, Electrochemistry Communications 11 (2009) 1289-1291

X. Liu, G. Zangari, L. Shen, Journal of Applied Phisics 87 (2000) 5410-5412

Y. Zhang, D. G. Ivey, Chemistry of Materials 16 (2004) 1189-1194

Y. Zhang, D. G. Ivey, Materials Science and Engineering B 140 (2007) 15-22

X. Liu, G. Zangari, M. Shamsuzzoha, Journal of the Electrochemical Society 150 (2003) C159-C168

F.E. Atalay, H. Kaya, S. Atalay, Physica B 371 (2006) 327-331

Y. Yang, International Journal of Electrochemical Science 10 (2015) 5164-5175

T. Nakanishi, M. Ozaki, H. S. Nam, T. Yokoshima, T. Osaka, Journal of the Electrochemical Society 148 (2001) C627-C631

M. Saito, N. Ishiwata, K. Ohashi, Journal of the Electrochemical Society 149 (2002) C642-C647

I. Tabakovich, V. Inturi, S. Riemer, Journal of the Electrochemical Society 149 (2002) C18-C22

R. Caballero-Flores, V. Franco, A. Conde, L. F. Kiss, L. Péter, I. Bakonyi, Journal of Nanoscience and Nanotechnology 12 (2012) 7432-7436

Published

03-03-2018

How to Cite

Péter, L., Vad, K., Csik, A., Muñíz, R., Lobo, L., Pereiro, R., Å turm, S., Žužek Rožman, K., Molnár, G., Németh, K., Neuróhr, K., Boros, K., Pogány, L., & Bakonyi, I. (2018). In-depth component distribution in electrodeposited alloys and multilayers. Journal of Electrochemical Science and Engineering, 8(1), 49–71. https://doi.org/10.5599/jese.480

Issue

Section

6th RSE SEE Special Issue