Influence of aging on the heat and gas emissions from commercial lithium ion cells in case of thermal failure

  • Michael Lammer Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25C, 8010 Graz http://orcid.org/0000-0002-8838-5616
  • Alexander Königseder Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25C, 8010 Graz
  • Peter Gluschitz Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25C, 8010 Graz
  • Viktor Hacker Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25C, 8010 Graz
Keywords: Battery characterisation, thermal runaway, gas analysis, heat quantification

Abstract

A method for thermal ramp experiments on cylindrical 18650 Li-ion cells has been established. The method was applied on pristine cells as well as on devices aged by cyclisation or by storage at elevated temperature respectively. The tested cells comprise three types of LiNi0.8Co0.15Al0.05O2 cells for either high power or high energy applications. The heat flux to and from the cell was investigated. Degradation and exothermic breakdown released large amounts of heat and gas. The total gas and heat emission from cycled cells was significantly larger than emission from cells aged by storage. After aging, the low energy cell ICR18650HE4 did not transgress into thermal runaway. Gas composition changed mainly in the early stage of the experiment. The composition of the initial gas release changed from predominantly CO2 towards hydrocarbons. The thermal runaway emitted for all tests a comparable mixture of H2, CO and CO2.

Downloads

Download data is not yet available.

References

K. Bullis, MIT Technol. Rev. (2013). https://www.technologyreview.com/s/521976/are-electric-vehicles-a-fire-hazard/ (accessed November 15, 2017).

T. V. Wilson, HowStuffWorks (2017). https://computer.howstuffworks.com/dell-battery-fire.htm (accessed November 15, 2017).

A. St. John, CR Consum. Reports (2017). https://www.consumerreports.org/product-safety/whats-behind-the-increase-in-lithium-ion-battery-fires-on-planes/ (accessed November 15, 2017).

A. St. John, CR Consum. Reports (2017). https://www.consumerreports.org/laptop-computers/what-to-do-if-your-laptop-catches-fire/ (accessed November 15, 2017).

E. Weise, USA Today (2016). https://www.usatoday.com/story/tech/news/2016/09/02/samsung-battery-lithium-ion-fire-burning-explosion/89782856/ (accessed November 15, 2017).

V. Ruiz, A. Pfrang, A. Kriston, N. Omar, P. Van den Bossche, L. Boon-Brett, Renew. Sustain. Energy Rev. 81 (2017) 1–26.

C. Y. Jhu, Y. W. Wang, C. Y. Wen, C. M. Shu, Appl. Energy. 100 (2012) 127–131.

Y. Fu, S. Lu, K. Li, C. Liu, X. Cheng, H. Zhang, J. Power Sources. 273 (2015) 216–222.

M. Lammer, A. Königseder, V. Hacker, RSC Adv. 7 (2017) 24425-24429.

A. W. Golubkov, S. Scheikl, R. Planteu, G. Voitic, H. Wiltsche, C. Stangl, G. Fauler, A. Thaler, V. Hacker, RSC Adv. 5 (2015) 57171–57186.

P. Andersson, J. Anderson, F. Larsson, B.-E. Mellander, ESFSS 2015 2nd Eur. Symp. Fire Saf. Sci. 16 - 18 June 2015 Eur. Univ. Cyprus, Chalmers Publication Library, 2015: pp. 1–5.

C. R. Birkl, M. R. Roberts, E. Mcturk, P. G. Bruce, D. A. Howey, J. Power Sources 341 (2016) 1–35.

M. Börner, A. Friesen, M. Grützke, Y. P. Stenzel, G. Brunklaus, J. Haetge, S. Nowak, F. M. Schappacher, M. Winter, J. Power Sources 342 (2017) 382–392.

R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 192 (2015) 3–25.

P. G. Balakrishnan, R. Ramesh, T. Prem Kumar, J. Power Sources 155 (2006) 401–414.

V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4 (2011) 3243–3262.

R. Zhao, S. Zhang, J. Liu, J. Gu, J. Power Sources 299 (2015) 557–577.

D. Doughty, E.P. Roth, Electrochem. Soc. Interface 21(2) (2012) 37–44.

T. H. Dubaniewicz, J. P. DuCarme, IEEE Trans. Ind. Appl. 49 (2013) 2451–2460.

R. Spotnitz, J. Franklin, J. Power Sources 113 (2003) 81–100.

R. A. Leising, M. J. Palazzo, E. S. Takeuchi, K. J. Takeuchi, J. Electrochem. Soc. 148 (2001) A838.

K.-H. Yen, M. Tabaddor, Y. Y. Chiang, L.-J. Chen, C. Wang, Proceedings of the 44th Power Sources Confernce, Las Vegas, Nevada, USA, 2010, pp. 14-18.

A. Friesen, F. Horsthemke, X. Mönnighoff, G. Brunklaus, R. Krafft, M. Börner, T. Risthaus, M. Winter, F. M. Schappacher, J. Power Sources 334 (2016) 1–11.

T. Waldmann, M. Wohlfahrt-Mehrens, Electrochim. Acta 230 (2017) 454–460.

E. P. Roth, D. H. Doughty, D. L. Pile, J. Power Sources 174 (2007) 579–583.

H. J. Bang, H. Joachin, H. Yang, K. Amine, J. Prakash, J. Electrochem. Soc. 153 (2006) A731–A737.

A. Eddahech, O. Briat, J. M. Vinassa, Energy 61 (2013) 432–439.

F. Larsson, Assessment of safety characteristics for Li-ion battery cells by abuse testing, Thesis, Chalmers University of Technology, Göteborg, 2014.

A. Hofmann, N. Uhlmann, C. Ziebert, O. Wiegand, A. Schmidt, T. Hanemann, Appl. Therm. Eng. 124 (2017) 539–544.

E. Sarasketa-Zabala, I. Gandiaga, E. Martinez-Laserna, L. M. Rodriguez-Martinez, I. Villarreal, J. Power Sources 275 (2015) 573–587.

Y. Troxler, B. Wu, M. Marinescu, V. Yufit, Y. Patel, A. J. Marquis, N. P. Brandon, G. J. Offer, J. Power Sources 247 (2014) 1018–1025.

A. Lecocq, M. Bertana, B. Truchot, G. Marlair, Proceedings from 2nd International Conference on Fires in Vehicles, Chicago, USA, 27-28 September 2012, pp. 183-193..

X. Liu, S. I. Stoliarov, M. Denlinger, A. Masias, K. Snyder, J. Power Sources 280 (2015) 516–525.

X. Feng, M. Fang, X. He, M. Ouyang, L. Lu, H. Wang, M. Zhang, J. Power Sources 255 (2014) 294–301.

E. Schuster, C. Ziebert, A. Melcher, M. Rohde, H. J. Seifert, J. Power Sources 286 (2015) 580–589.

A. W. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler, V. Hacker, RSC Adv. 4 (2014) 3633–3642.

Published
03-03-2018
Section
6th RSE SEE Special Issue