Electrocoagulation of whey acids: anode and cathode materials, electroactive area and polarization curves
DOI:
https://doi.org/10.5599/jese.381Keywords:
electrocoagulation, electroactive area, capacitance, overpotentials, wheyAbstract
Anode (Al and Fe) and cathode (graphite and Ti/RuO2) materials have been tested for electrocoagulation (EC) and purification of the acid whey. The electroactive areas (EA) of electrodes were calculated by the double layer capacitance method. Experiments were performed by cyclic voltammetry, chronoamperometry and polarization experiments. Among cathodic materials, the Ti/RuO2 electrode showed higher EA (2167 cm2) than graphite (1560 cm2). The Fe anode was found more stable than Al with greater charge transfer carried out in less time. Correlation of these results with those obtained during preliminary tests confirmed high removals (79 %) in 8 h. For the Al electrode, 24 h were required to achieve efficiency of 49 %.
Downloads
References
M. Piña, A. Martín, C. A. González, F. Prieto, A. Guevara, J. E. García. Revista Mexicana de Ingeniería Química 10(2) (2011) 257-271.
A. P. Restrepo, A. Arango, L. F. Garcés. Producción + Limpia 1(2) (2006) 58-77.
E. Ojeda, R. Hing, Y- González. Revista CENIC Ciencias Químicas 43(1) (2912), 21-42.
S. Tchamango, E. Nanseu-Njiki, D. Ngameni, A. Hadjiev, A Darchen. Science of the Total Environment 408 (2010) 947–952.
P. Panesar, J. Kennedy, D. Gandhi, K. Bunko, Food Chemistry 105 (2007) 1-14.
A. Abaigar, ITG Ganadero 94(8) (2009) 13-17.
N, Balasubramanian, K. Madhavan, Chemical Engineering Technology 24 (2001) 519–521.
M. Y. Mollah, P. G. Morkovsky, A. G. Gomes, M. Kesmez, J. Parga, Journal of Hazardous Materials 114(1-3) (2004) 199–210.
O. T. Can, M. Bayramoglu, M. Kobya. Industrial Engineering Chemistry Research 42 (2003) 3391–6.
M. Kobya, O. T. Can, M. Bayramoglu. Journal of Hazardous Materials B1001 (2003) 63–78.
H. Inan, A. Dimoglo, H. Simsek, M. Karpuzku. Separation and Purification Technology 36 (2004) 23–31.
G. Chen, Separation and Purification Technology 38(1) (2004) 11–41.
V. P. Osipenko, P. I. Pogorelyi. Metallurgist 21(9-10) (1977) 44–45.
M. Y. Mollah, R. Schennach, J. R. Parga, D. L. Cocke. Journal of Hazardous Materials 84(1) (2001) 29–41.
R. Parga, D. L. Cocke, V. Valverde. Cheical Engineering Technology 28(5) (2005) 605–612.
D. Ghernaouta, A. Badisa, A. Kellila, A. Desalination 219(1-3) (2008) 118–125.
X. M. Chen, G. Chen, P. L. Yue. Separation and Purification Technology 19(1) (2000) 65–76.
H. K. Hansen, P. Núñez, R. Grandon. Minerals Engineering 19(5) (2006) 521–524.
D- Mills, Journal American Water Works Association 92(6) (2000) 34–43.
P. R. Kumar, S. Chaudhari, K. Khilar, S. P. Mahajan. Chemosphere 55(9) (2004) 1245–1252.
D. Lakshmanan, D. Clifford, and S. Gautam. Environmental Science Technology 43 (2009) 3853–3859.
P. C. Singer, W. Stumm. Journal American Water Works Association 62 (1970) 198–202.
W. Stumm, S. Morgan, Journal. Aquatic Chemistry; 1981. Wiley-Interscience, New York.
M. Bond, S. Kratsis and S. Mitchell. Journal Analyst 122 (1997) 1147-1152.
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.