Sucrose fatty esters from underutilized seed oil of Terminalia catappa as potential steel corrosion inhibitor in acidic medium

  • Adewale Adewuyi Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun state, Nigeria
  • Omolade Rahman Bello Industrial Unit, Department of Chemistry, University of Ibadan, Ibadan, Oyo State
  • Rotimi A. Oderinde Industrial Unit, Department of Chemistry, University of Ibadan, Ibadan, Oyo State
Keywords: Adsorption, Corrosion, Adsorption isotherm, Mild steel, Fatty esters


Corrosion of metals is a common problem which requires definite attention. In response to this, the oil was extracted from the seed of Terminalia catappa and used to synthesize sucrose fatty esters via simple reaction mechanism which was considered eco-friendly and sustainable. The corrosion inhibition capacity of sucrose fatty esters for mild steel in 1 M HCl was studied using the weight loss method. It was shown that sucrose fatty ester inhibited corrosion process of mild steel and obeyed Langmuir isotherm. Corrosion rate and inhibition efficiency of sucrose fatty esters were found to reduce with increase of immersion time. The study presented sucrose fatty ester as a promising inhibitor of mild steel corrosion in acidic medium.


Download data is not yet available.


T. Murata, Weathering steel, in: R.W. Revie (Ed.), Uhlig’s Corrosion Handbook, J. Wiley &Sons, New York, 2000, 569–580

M. Morcillo, B. Chico, I. Díaz, H. Cano, D .de la Fuente, Corros. Sci. 77 (2013) 6–24.

Y. Oshida, E. B. Tuna, O. Aktören, K. Gençay, Int. J. Mol. Sci. 11 (2010) 1580-1678

K. H. Lo, C. H. Shek, J. K. L. Lai, Mat. Sci. Eng. 65 (2009) 39-104

H. Nady, Egypt. J. Petr. (2016)

M. M. Oman, M. N. Shalaby, Mater. Chem. Phys.77 (2003) 261–269.

P. C. Okafor, X. Liu, Y. G. Zheng, Corros. Sci. 51 (2009) 761–768.

V. Garcia-Arriaga, J. Alvarez-Ramirez, M. Amaya, E. Sosa, Corros. Sci. 52 (2010) 2268–2279.

M. Finšgar, J. Jackson, Corros. Sci. 86 (2014)17–41

D. Brondel, R. Edwards, A. Hayman, D. Hill, S. Mehta, T. Semerad, Oilfield Rev. 6 (1994) 4–18.

M. Quraishi, D. Jamal, J. Am. Oil Chem. Soc.77 (2000) 1107–1111.

A. L. D. Q. Baddini, S. P. Cardoso, E. Hollauer, J. A. D. C. P. Gomes, Electrochim. Acta, 53 (2007) 434–446.

W. P. Singh, J. O. Bockris, Corrosion 96 (1996) 24-29

D. I. Horsup, J. C. Clark, B. P. Binks, P. D. I. Fletcher, J. T. Hicks, Corrosion 66 (2010) 036001-036014.

A. Adewuyi, A. Göpfert, T. Wolff, Ind. Crops Prod. 52 (2014) 439– 449

L. Matos, J. M. Nzikou, A. Kimbonguila, C. B. Ndangui, N. P. G. Pambou-Tobi, A. A. Abena, Th. Silou, J. Scher, S. Desobry, Adv. J. Food Sci. Technol. 1 (2009) 72-77.

A. Adewuyi, A. Göpfert, T. Wolff, Central Eur. J. Chem. 11 (2013) 1368-1380.

A. Adewuyi, A. Göpfert, T. Wolff, Ind. Crops Prod. 52 (2014) 439– 449.

I. B. Obot, N. O. Obi-Egbedi, N. W. Odozi, Corros. Sci. 52 (2010) 923–926.

G. Y. Elewady, I. A. El-Said, A. S. Fouda, Int. J. Electrochem. Sci. 3 (2008) 177-190.

E. E. Ebenso, I. B. Obot, L. C. Murulana, Int. J. Electrochem. Sci. 5 (2010)1574 – 1586.

I. B. Obot, N. O. Obi-Egbedi, J. Current. Appl. Phy. 11 (2011) 382- 392.

A. Adewuyi, A. D. Adesina, R. A. Oderinde, Advances in Chemistry, 2014 (2014) 896965,

Y. Ho, Polish J. Environ. Studies 15 (2006) 81-86.

X. H. Li, S. D. Deng, G. N. Mu, H. Fu, F. Z. Yang, Corros. Sci. 50 (2008) 420-430.

A. O. Dada, A. P. Olalekan, A. M. Olatunya, O. Dada, J. Appl. Chem. 3 (2012) 38-45.

Electrochemical Science