Preparation of NiO-graphene oxide nanosensor for adsorptive stripping voltammetric determination of dinoterbon in food samples

  • Kasaram Roja Electroanalytical Lab, Department of Chemistry, Sri Venkateswara University, Tirupati-517 502, A. P
  • Puthalapattu Reddy Prasad Electroanalytical Lab, Department of Chemistry, Sri Venkateswara University, Tirupati-517 502, A. P
  • Punyasamudram Sandhya Department of Chemistry, Sri Padmavati Mahila Visvavidyalayam, Tirupati-517 502, A. P.
  • Neelam Yugandhar Sreedhar Electroanalytical Lab, Department of Chemistry, Sri Venkateswara University, Tirupati-517 502, A. P.
Keywords: Nanosensor, pesticide, voltammetry

Abstract

Graphene oxide (GO) modified NiO electrochemical nanosensor was developed for the determination of the dinoterbon in food samples using adsorptive stripping voltammetry. The modified nanosensor characterized by TEM, XRD, cyclic and adsorptive stripping voltammetry. Dinoterbon pesticide exhibited a single well-defined cathodic peak at pH 4.0 at Britton–Robinson buffer (-810.0 mV). The voltammetric characterization of the pesti­cide residues is evaluated and the parameter such as the effect of pH, scan rate, pulse amplitude, deposition potential and deposition time were optimized. The current–concen­tration plot obtained using this peak was straight-lined over the range from 0.05 to 50.00 µg mL-1 with limit of detection (LOD) 0.028 µg mL-1. The proposed method was efficiently applied to the determination of dinoterbon in food samples. The mean recoveries of the pesticide 97.40 to 99.88 % with a relative standard deviation of 0.114 % in food samples respectively.


 

Downloads

Download data is not yet available.

References

R. C. Gupta, Toxicol. Mechan. Methods, 14 (2004) 103-143.

W.T. Song, Y.Q. Zhang, G.J. Li, H.Y. Chen, H. Wang, Q. Zhao, D. He, C. Zhao, L. Ding, Food Chem., 143 (2014) 192-198.

P. Lautala, M. Kivimaa, H. Salomies, E. Elovaara, J. Taskinen, Eur. J. Pharm. Sci. 4, S167 (1996).

X. Guo, Z. Wang, S. Zhou, Talanta, 6 (2004) 135.

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 306 (2004) 666.

M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Nano Letters 8 (2008) 3498.

A.K. Mishra, S. Ramaprabhu, Journal of Physical Chemistry C, 115 (2011) 14006.

E. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Nano Letters 8 (2008) 2277.

J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G.L. Graff, W.D. Bennett, Z. Nie, Nano Letters 11(2011) 5071.

X. Wang, L.J. Zhi, N. Tsao, Z. Tomovic, J.L. Li, K. Mullen, Angew and te Chemie International Edition 47 (2008) 2990.

S.J. Guo, S.J. Dong, Journal of Materials Chemistry 21 (2011) 18503.

J.D. Qiu, J. Huang, R.P. Liang, Sensors and Actuators B 160 (2011) 287.

D. Chen, L.H. Tang, J.H. Li, Chemical Society Reviews 39 (2010) 3157.

S.S. Han, H. Kim, N. Park, Journal of Physical Chemistry C115 (2011) 24696.

D. Li, R.B. Kaner, Science 320 (2008) 1170.

S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282.

D.Li, R.B. Kaner, Science 320 (2008) 1170.

K.Wang, Q.Liu, L.N. Dai, J.J. Yan, C. Ju, B.J. Qiu, X.Y. Wu, Analytica Chimica Acta, 695 (2011) 84.

D. Zheng, S.K. Vashist, K. Al-Rubeaan, J.H.T. Luong, F.S. Sheu, Talanta, 99, (2012) 22.

T.Seto, H.Akinaga, F.Talano, K.Koga, T.Orii, M.Hirasawa, J.Phys. Chem.B 109 (2005)13403.

P.Lunkenheimer, A.Loidl, C.Ottermann, H.Bange, Phys.Rev.B:Condens. Matter 44 (1991) 5927.

C.N.Reddy, P.R.Prasad, and N.Y. Sreedhar, Journal of Analytical Methods in Chemistry, 420761 (2013) 1.

D. Rekha, N.Y .Sreedhar, P.R. Prasad, Global journal of frontier Science research, 10(2) (2010) 21.

Y. Li, B. Zhang, J.X. Zhao, Z. Ge, X. Zhao, L. Zou, Applied Surface Science 279 (2013) 367.

H. Zhang, H. Huang, H. Ming, H. Li, L. Zhang, Y. Liu and Z. Kang, J. Mater. Chem., 22(2012) 10501.

Published
30-09-2016
Section
Electrochemical Science