Exploring the impact of Al-based electrolytes on the charge storage behavior of vine shoots derived carbon

Original scientific paper

Authors

  • Jana Mišurović University of Montenegro – Faculty of Metallurgy and Technology, Cetinjski put bb, 81000 Podgorica, Montenegro https://orcid.org/0000-0003-3907-9169
  • Aleksandra Gezović Miljanić University of Montenegro – Faculty of Metallurgy and Technology, Cetinjski put bb, 81000 Podgorica, Montenegro https://orcid.org/0000-0002-2917-654X
  • Veselinka Grudić University of Montenegro – Faculty of Metallurgy and Technology, Cetinjski put bb, 81000 Podgorica, Montenegro https://orcid.org/0000-0002-0663-7753
  • Robert Dominko National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia https://orcid.org/0000-0002-6673-4459
  • Milica Vujković University of Belgrade – Faculty of Physical Chemistry, Studentski trg 12-16, 11158, Belgrade, Serbia; Center for Interdisciplinary and Multidisciplinary Studies, University of Montenegro, Podgorica, Montenegro https://orcid.org/0000-0002-0518-8837

DOI:

https://doi.org/10.5599/jese.2532

Keywords:

Al-based supercapacitors;, aqueous electrolyte, cyclic stability aspect
Graphical Abstract

Abstract

A new concept for affordable supercapacitors based on Al aqueous electrolytes was proposed recently. This study provides a deeper insight into the cyclic performance of vine shoots-derived activated carbon using three different 1 M aqueous electrolytes: Al2(SO4)3, Al(NO3)3 and AlCl3. Cyclic voltammetry (CV), galvanostatic cycling and impedance measurements have shown that the type of anion causes the differences in the rate capability and long-term cyclability. Although CV deviation is provoked by aggravated sulphate penetration into pores upon switching at higher currents, Al2(SO4)3 emerged as the most promising electrolyte solution due to the best cycling stability of the 1.5 V full cell over 15,000 cycles. Intensive oxidation of the positive electrode during initial cycling, induced by nitrates reduction, is the main reason for the fastest capacitance drop observed in Al(NO3)3. Therefore, the capacitance values of the carbon cell measured after 5,000 cycles in Al(NO3)3 (75 F g-1) are two times lower than the corresponding values in Al2(SO4)3 and AlCl3 (131 and 127 F g-1, respectively). The oxidation becomes more pro­nounced only after 10,000 cycles in AlCl3, thus causing a notable capacitance drop, which is not evidenced in Al2(SO4)3. Al2(SO4)3-based cell can withstand 15,000 with good specific capacitance/energy retention.

Downloads

Download data is not yet available.

References

D. Jiménez-Cordero, F. Heras, M. A. Gilarranz, E. Raymundo-Piñero, Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes, Carbon 71 (2014) 127-138 https://doi.org/10.1016/j.carbon.2014.01.021.

L. Guardia, L. Suárez, N. Querejeta, V. Vretenár, P. Kotrusz, V. Skákalová, T.A. Centeno, Biomass waste-carbon/reduced graphene oxide composite electrodes for enhanced supercapacitors, Electrochimica Acta 298 (2019) 910-917 https://doi.org/10.1016/j.electacta.2018.12.160.

L. Alcaraz, A. Adán-Más, P. Arévalo-Cid, M. de F. Montemor, F. A. López, Activated Carbons From Winemaking Biowastes for Electrochemical Double-Layer Capacitors, Frontiers in Chemistry 8 (2020) 1-10 https://doi.org/10.3389/fchem.2020.00686.

L. Suárez, T.A. Centeno, Unravelling the volumetric performance of activated carbons from biomass wastes in supercapacitors, Journal of Power Sources 448 (2020) 227413 https://doi.org/10.1016/j.jpowsour.2019.227413.

J. Zhang, H. Chen, J. Bai, M. Xu, C. Luo, L. Yang, L. Bai, D. Wei, W. Wang, H. Yang, N-doped hierarchically porous carbon derived from grape marcs for high-performance supercapacitors, Journal of Alloys and Compounds 854 (2021) 157207 https://doi.org/10.1016/j.jallcom.2020.157207.

L. Guardia, L. Suárez, N. Querejeta, C. Pevida, T.A. Centeno, Winery wastes as precursors of sustainable porous carbons for environmental applications, Journal of Cleaner Production 193 (2018) 614-624 https://doi.org/10.1016/j.jclepro.2018.05.085.

J. J. Manyà, B. González, M. Azuara, G. Arner, Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity, Chemical Engineering Journal 345 (2018) 631-639 https://doi.org/10.1016/j.cej.2018.01.092.

M. Erdem, R. Orhan, M. Şahin, E. Aydın, Preparation and Characterization of a Novel Activated Carbon from Vine Shoots by ZnCl2 Activation and Investigation of Its Rifampicine Removal Capability, Water, Air, & Soil Pollution 227 (2016) https://doi.org/10.1007/s11270-016-2929-5.

M. Ruiz-Fernández, M. Alexandre-Franco, C. Fernández-González, V. Gómez-Serrano, Adsorption isotherms of methylene blue in aqueous solution onto activated carbons developed from vine shoots (vitis vinifera) by physical and chemical methods, Adsorption Science & Technology 28 (2010) 751-759 https://doi.org/10.1260/0263-6174.28.8-9.751.

B. Corcho-Corral, M. Olivares-Marín, E. Valdes-Sánchez, C. Fernández-González, A. Macías-García, V. Gómez-Serrano, Development of activated carbon using vine shoots (Vitis Vinifera) and its use for wine treatment, Journal of Agricultural and Food Chemistry 53 (2005) 644-650 https://doi.org/10.1021/jf048824d.

J. A. S. B. Cardoso, B. Šljukić, M. Erdem, C. A. C. Sequeira, D. M. F. Santos, Vine shoots and grape stalks as carbon sources for hydrogen evolution reaction electrocatalyst supports, Catalysts 8 (2018) https://doi.org/10.3390/catal8020050.

D. Alvira, D. Antorán, M. Vidal, V. Sebastian, Vine Shoots-Derived Hard Carbons as Anodes for Sodium- Ion Batteries: Role of Annealing Temperature in Regulating Their Structure and Morphology, Batteries and Supercapacitors 6 (2023) e202300233 https://doi.org/10.1002/batt.202300233.

A. Gezović, J. Mišurović, B. Milovanović, M. Etinski, J. Krstić, V. Grudić, R. Dominko, S. Mentus, M.J. Vujković, High Al-ion storage of vine shoots-derived activated carbon New concept for affordable and sustainable supercapacitors, Journal of Power Sources 538 (2022) 231561 https://doi.org/10.1016/j.jpowsour.2022.231561.

M. P. Bichat, E. Raymundo-Piñero, F. Béguin, High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte, Carbon 48 (2010) 4351-4361 https://doi.org/10.1016/j.carbon.2010.07.049.

L. Deng, G. Zhang, L. Kang, Z. Lei, C. Liu, Z.H. Liu, Graphene/VO2 hybrid material for high performance electrochemical capacitor, Electrochimica Acta 112 (2013) 448-457 https://doi.org/10.1016/j.electacta.2013.08.158.

L. Demarconnay, E. Raymundo-Piñero, F. Béguin, A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution, Electrochemistry Communications 12 (2010) 1275-1278 https://doi.org/10.1016/j.elecom.2010.06.036.

K. Fic, G. Lota, M. Meller, E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors, Energy & Environmental Science 5 (2012) 5842-5850 https://doi.org/10.1039/c1ee02262h.

K. Fic, M. He, E.J. Berg, P. Novák, E. Frackowiak, Comparative operando study of degradation mechanisms in carbon-based electrochemical capacitors with Li2SO4 and LiNO3 electrolytes, Carbon 120 (2017) 281-293 https://doi.org/10.1016/j.carbon.2017.05.061.

J. Piwek, A. Platek, E. Frackowiak, K. Fic, Mechanisms of the performance fading of carbon-based electrochemical capacitors operating in a LiNO3 electrolyte, Journal of Power Sources 438 (2019) 227029 https://doi.org/10.1016/j.jpowsour.2019.227029.

J. Piwek, A. Platek-Mielczarek, E. Frackowiak, K. Fic, Enhancing capacitor lifetime by alternate constant polarization, Journal of Power Sources 506 (2021) 230131 https://doi.org/10.1016/j.jpowsour.2021.230131.

J. M. V. Nabais, C. Laginhas, P. J. M. Carrott, M. M. L. R. Carrott, Thermal conversion of a novel biomass agricultural residue (vine shoots) into activated carbon using activation with CO2, Journal of Analytical and Applied Pyrolysis 87 (2010) 8-13 https://doi.org/10.1016/j.jaap.2009.09.004.

H. A. Andreas, B. E. Conway, Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs, Electrochimica Acta 51 (2006) 6510-6520 https://doi.org/10.1016/j.electacta.2006.04.045.

A. Śliwak, B. Grzyb, J. Ćwikła, G. Gryglewicz, Influence of wet oxidation of herringbone carbon nanofibers on the pseudocapacitance effect, Carbon 64 (2013) 324-333 https://doi.org/10.1016/j.carbon.2013.07.082.

S. Garcia-Segura, M. Lanzarini-Lopes, K. Hristovski, P. Westerhoff, Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications, Applied Catalysis B: Environment and Energy 236 (2018) 546-568 https://doi.org/10.1016/j.apcatb.2018.05.041.

M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, M.S. Dresselhaus, Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes, Journal of The Electrochemical Society 148 (2001) A910 https://doi.org/10.1149/1.1382589.

H. Wu, X. Wang, L. Jiang, C. Wu, Q. Zhao, X. Liu, B. Hu, L. Yi, The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon, Journal of Power Sources 226 (2013) 202-209 https://doi.org/10.1016/j.jpowsour.2012.11.014.

Y. Marcus, Ionic radii in aqueous solutions, Chemical Reviews 88 (1989) 1475-1798 http://dx.doi.org/10.1021/cr00090a003.

D. W. Smith, Ionic hydration enthalpies, Journal of Chemical Education 54 (1977) 540-542 https://doi.org/10.1021/ed054p540.

X. Yang, Q. Xie, S. Yao, A comparative study on polyaniline degradation by an electrochemical quartz crystal impedance system: Electrode and solution effects, Synthetic Metals 143 (2004) 119-128 https://doi.org/10.1016/j.synthmet.2003.10.027.

K. Fic, M. Meller, J. Menzel, E. Frackowiak, Around the thermodynamic limitations of supercapacitors operating in aqueous electrolytes, Electrochimica Acta 206 (2016) 496-503 https://doi.org/10.1016/j.electacta.2016.02.077.

Published

11-12-2024

How to Cite

Mišurović, J., Gezović Miljanić, A., Grudić, V., Dominko, R., & Vujković, M. (2024). Exploring the impact of Al-based electrolytes on the charge storage behavior of vine shoots derived carbon: Original scientific paper. Journal of Electrochemical Science and Engineering, 2532. https://doi.org/10.5599/jese.2532

Issue

Section

RSE SEE 9 Special Issue

Funding data