In situ and operando characterization techniques for nanocatalyst-based electrochemical hydrogen evolution reactions

Review paper

Authors

  • Anaclet Nsabimana Chemistry Department, College of Science and Technology, University of Rwanda, P.O. Box: 3900, Kigali, Rwanda https://orcid.org/0000-0002-8394-4650
  • Yiran Guan State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, China https://orcid.org/0000-0002-8315-8852
  • Guobao Xu State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, China and School of Chemistry and Applied Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China https://orcid.org/0000-0001-9747-0575

DOI:

https://doi.org/10.5599/jese.2526

Keywords:

Electrocatalyst, operando technique, in situ characterization techniques, hydrogen evolution reaction
Graphical Abstract

Abstract

The hydrogen evolution reaction is important in energy conversion and storage. This has led to the design of different types of catalysts and production setups. Understanding the status of the catalysts and reaction mechanisms motivated researchers to adopt the operando/in situ techniques. Herein, we present a brief overview of the recent (from 2020) advances in the use of in situ and operando characterization techniques, such as in situ X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction analysis, IR spectroscopy, electrochemical Raman spectroscopy, online inductively coupled plasma - mass spectro­scopy, differential electrochemical mass spectroscopy, optical microscopy, electron micro­scopy, electrochemical atomic microscopy, electrochemical scanning tun­neling microscopy, and scanning electrochemical microscopy, in the electrochemical hydro­gen evolution reaction. Representative examples of the applications of these techniques are also provided. Challenges in this field and future perspectives are discussed.

Downloads

Download data is not yet available.

References

S. Shiva Kumar, V. Himabindu, Hydrogen production by PEM water electrolysis - A review, Materials Science for Energy Technologie. 2 (2019) 442-454. https://doi.org/10.1016/j.mset.2019.03.002

H. Ishaq, I. Dincer, Comparative assessment of renewable energy-based hydrogen production methods, Renewable and Sustainable Energy Review. 135 (2021) 110192. https://doi.org/10.1016/j.rser.2020.110192

F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu, X. Sun, J. Qiu, Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation, Nature Communications 12 (2021) 4182. https://doi.org/10.1038/s41467-021-24529-3

Y. Wang, T. Williams, T. R. Gengenbach, B. Kong, D. Zhao, H. Wang, C. Selomulya, Unique Hybrid Ni2P/MoO2@MoS2 Nanomaterials as Bifunctional Non-Noble-Metal Electro-Catalysts for Water Splitting, Nanoscale 44 (2017) 17349-17356. https://doi.org/10.1039/C7NR06186B

D. Liu, G. Xu, H. Yang, H. Wang, B. Y. Xia, Rational Design of Transition Metal Phosphide‐Based Electrocatalysts for Hydrogen Evolution, Advanced Functional Materials 33 (2023) 2208358. https://doi.org/10.1002/adfm.202208358 .

F. Liu, C. Shi, X. Guo, Z. He, L. Pan, Z. Huang, X. Zhang, J. Zou, Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review, Advanced Science 9 (2022) 2200307. https://doi.org/10.1002/advs.202200307.

A. Mondal, A. Vomiero, 2D Transition Metal Dichalcogenides‐Based Electrocatalysts for Hydrogen Evolution Reaction, Advanced Functional Materials. 32 (2022) 2208994. https://doi.org/10.1002/adfm.202208994

Y. Yang, Y. Xiong, R. Zeng, X. Lu, M. Krumov, X. Huang, W. Xu, H. Wang, F. J. Disalvo, J. D. Brock, D. A. Muller, H. D. Abrunã, Operando Methods in Electrocatalysis, ACS Catalysis 11 (2021) 1136-1178. https://doi.org/10.1021/acscatal.0c04789

A. H. Shah, Z. Zhang, Z. Huang, S. Wang, G. Zhong, C. Wan, A. N. Alexandrova, Y. Huang, X. Duan, The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction, Nature Catalysis 5 (2022) 923-933. https://doi.org/10.1038/s41929-022-00851-x

J. Proost, A. Delvaux, In-situ monitoring of hydrogen absorption into Ni thin film electrodes during alkaline water electrolysis, Electrochimica Acta 322 (2019) 134752. https://doi.org/10.1016/j.electacta.2019.134752

S. Ramasundaram, S. Jeevanandham, N. Vijay, S. Divya, P. Jerome, T. H. Oh, Unraveling the Dynamic Properties of New-Age Energy Materials Chemistry Using Advanced In Situ Transmission Electron Microscopy, Molecules 29 (2024) 4411. https://doi.org/10.3390/molecules29184411

X. Li, H.-Y. Wang, H. Yang, W. Cai, S. Liu, B. Liu, In Situ/Operando Characterization Techniques to Probe the Electrochemical Reactions for Energy Conversion, Small Methods 2 (2018) 1700395. https://doi.org/10.1002/smtd.201700395

S. W. Chee, T. Lunkenbein, R. Schlögl, B. R. Cuenya, In situ and operando electron microscopy in heterogeneous catalysis—insights into multi-scale chemical dynamics, Journal of Physics: Condensed Matter 33 (2021) 153001. https://doi.org/10.1088/1361-648X/abddfd

Y. Deng, B. S. Yeo, Characterization of Electrocatalytic Water Splitting and CO2 Reduction Reactions Using In Situ/Operando Raman Spectroscopy, ACS Catalysis 7 (2017) 7873-7889. https://doi.org/10.1021/acscatal.7b02561

S. Zuo, Z. P. Wu, H. Zhang, X. W. Lou, Operando Monitoring and Deciphering the Structural Evolution in Oxygen Evolution Electrocatalysis, Advanced Energy Materials 12 (2022) 2103383. https://doi.org/10.1002/aenm.202103383

B. Y. Kaplan, A. C. Kırlıoğlu, M. Alinezhadfar, M. A. Zabara, N. R. Mojarrad, B. Iskandarani, A. Yürüm, C. S. Ozkan, M. Ozkan, S. A. Gürsel, Hydrogen production via electrolysis: Operando monitoring and analyses, Chemical Catalysis 3 (2023) 100601. https://doi.org/10.1016/j.checat.2023.100601

X. Ding, D. Liu, P. Zhao, X. Chen, H. Wang, F. E. Oropeza, G. Gorni, M. Barawi, M. García-Tecedor, V. A. de la Peña O’Shea, J. P. Hofmann, J. Li, J. Kim, S. Cho, R. Wu, K. H. L. Zhang, Dynamic restructuring of nickel sulfides for electrocatalytic hydrogen evolution reaction, Nature Communications 15 (2024) 5336. https://doi.org/10.1038/s41467-024-49015-4

P. Tang, H. J. Lee, K. Hurlbutt, P. Y. Huang, S. Narayanan, C. Wang, D. Gianolio, R. Arrigo, J. Chen, J. H. Warner, M. Pasta, Elucidating the Formation and Structural Evolution of Platinum Single-Site Catalysts for the Hydrogen Evolution Reaction, ACS Catalysis 12 (2022) 3173-3180. https://doi.org/10.1021/acscatal.1c05958

J. Wang, H. Y. Tan, T. R. Kuo, S. C. Lin, C. S. Hsu, Y. Zhu, Y. C. Chu, T. L. Chen, J. F. Lee, H. M. Chen, In Situ Identifying the Dynamic Structure behind Activity of Atomically Dispersed Platinum Catalyst toward Hydrogen Evolution Reaction, Small 17 (2021) 2005713. https://doi.org/10.1002/smll.202005713

S. Pishgar, S. Gulati, J. M. Strain, Y. Liang, M. C. Mulvehill, J. M. Spurgeon, In Situ Analytical Techniques for the Investigation of Material Stability and Interface Dynamics in Electrocatalytic and Photoelectrochemical Applications, Small Methods 5 (2021) 2100322. https://doi.org/10.1002/smtd.202100322 .

P. Liu, A. Klyushin, P. Chandramathy Surendran, A. Fedorov, W. Xie, C. Zeng, X. Huang, Carbon Encapsulation of Supported Metallic Iridium Nanoparticles: An in Situ Transmission Electron Microscopy Study and Implications for Hydrogen Evolution Reaction, ACS Nano 17 (2023) 24395-24403. https://doi.org/10.1021/acsnano.3c10850

Y. He, S. Liu, M. Wang, Q. Cheng, H. Ji, T. Qian, C. Yan, Advanced In Situ Characterization Techniques for Direct Observation of Gas‐Involved Electrochemical Reactions, Energy & Environmental Materials 6 (2023) e12552. https://doi.org/10.1002/eem2.12552

O. M. Magnussen, J. Drnec, C. Qiu, I. Martens, J. J. Huang, R. Chattot, A. Singer, In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis, Chemical Reviews 124 (2024) 629-721. https://doi.org/10.1021/acs.chemrev.3c00331

L. Zhai, T.W. Benedict Lo, Z. Xu, J. Potter, J. Mo, X. Guo, C. C. Tang, S. C. Edman Tsang, S. P. Lau, In Situ Phase Transformation on Nickel-Based Selenides for Enhanced Hydrogen Evolution Reaction in Alkaline Medium, ACS Energy Letters 5 (2020) 2483-2491. https://doi.org/10.1021/acsenergylett.0c01385

H. Tan, B. Tang, Y. Lu, Q. Ji, L. Lv, H. Duan, N. Li, Y. Wang, S. Feng, Z. Li, C. Wang, F. Hu, Z. Sun, W. Yan, Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction, Nature Communications 13 (2022) 2024. https://doi.org/10.1038/s41467-022-29710-w

L. Zhou, C. Yang, W. Zhu, R. Li, X. Pang, Y. Zhen, C. Wang, L. Gao, F. Fu, Z. Gao, Y. Liang, Boosting Alkaline Hydrogen Evolution Reaction via an Unexpected Dynamic Evolution of Molybdenum and Selenium on MoSe2 Electrode, Advanced Energy Materials 12 (2022) 2202367. https://doi.org/10.1002/aenm.202202367

D. Johnson, H. E. Lai, K. Hansen, P. B. Balbuena, A. Djire, Hydrogen evolution reaction mechanism on Ti3C2 MXene revealed by in situ/operando Raman spectroelectrochemistry, Nanoscale 14 (2022) 5068-5078. https://doi.org/10.1039/d2nr00222a

A. Bazan-Aguilar, G. García, E. Pastor, J. L. Rodríguez, A. M. Baena-Moncada, In-situ spectroelectrochemical study of highly active Ni-based foam electrocatalysts for hydrogen evolution reaction, Applied Catalysis B: Environmental 336 (2023) 122930. https://doi.org/10.1016/j.apcatb.2023.122930

R. Aymerich‐Armengol, M. Vega‐Paredes, Z. Wang, A. M. Mingers, L. Camuti, J. Kim, J. Bae, I. Efthimiopoulos, R. Sahu, F. Podjaski, M. Rabe, C. Scheu, J. Lim, S. Zhang, Operando Insights on the Degradation Mechanisms of Rhenium‐Doped and Undoped Molybdenum Disulfide Nanocatalysts During Hydrogen Evolution Reaction and Open‐Circuit Conditions, Advanced Functional Materials (2024) 2413720. https://doi.org/10.1002/adfm.202413720

M. Smiljanić, M. Bele, L. J. Moriau, J. F. Vélez Santa, S. Menart, M. Šala, A. Hrnjić, P. Jovanovič, F. Ruiz-Zepeda, M. Gaberšček, N. Hodnik, Suppressing Platinum Electrocatalyst Degradation via a High-Surface-Area Organic Matrix Support, ACS Omega 7 (2022) 3540-3548. https://doi.org/10.1021/acsomega.1c06028

M. Smiljanić, A. Hrnjić, N. Maselj, M. Gatalo, P. Jovanovič, N. Hodnik, Advanced electro-chemical methods for characterization of proton exchange membrane electrocatalysts, in: Polymer Electrolyte-Based Electrochemical Devices, M. Lo Faro, S. Campagna Zignani, Eds., Elsevier Inc., 2024, pp. 49-90 https://doi.org/10.1016/B978-0-323-89784-6.00002-4

L. Moriau, T. Đukić, V. Domin, R. Kodym, M. Prokop, K. Bouzek, M. Gatalo, M. Šala, N. Hodnik, Towards improved online dissolution evaluation of Pt-alloy PEMFC electrocatalysts via electrochemical flow cell - ICP-MS setup upgrades, Electrochimica Acta 487 (2024) 144200. https://doi.org/10.1016/j.electacta.2024.144200

P. Jovanovič, A. Pavlišič, V. S. Šelih, M. Šala, N. Hodnik, M. Bele, S. Hočevar, M. Gaberšček, New insight into platinum dissolution from nanoparticulate platinum-based electrocatalysts using highly sensitive in situ concentration measurements, ChemCatChem 6 (2014) 449-453. https://doi.org/10.1002/cctc.201300936

M. Smiljanić, M. Bele, L. Moriau, F. Ruiz-Zepeda, M. Šala, N. Hodnik, Electrochemical Stability and Degradation of Commercial Pd/C Catalyst in Acidic Media, Journal of Physical Chemistry C 125 (2021) 27534-27542. https://doi.org/10.1021/acs.jpcc.1c08496

W. Du, Y. Shi, W. Zhou, Y. Yu, B. Zhang, Unveiling the In Situ Dissolution and Polymerization of Mo in Ni4Mo Alloy for Promoting the Hydrogen Evolution Reaction, Angewandte Chemie - International Edition 60 (2021) 7051-7055. https://doi.org/10.1002/anie.202015723

J.-F. Lemineur, P. Ciocci, J.-M. Noël, H. Ge, C. Combellas, F. Kanoufi, Imaging and Quantifying the Formation of Single Nanobubbles at Single Platinum Nanoparticles during the Hydrogen Evolution Reaction, ACS Nano 15 (2021) 2643-2653. https://doi.org/10.1021/acsnano.0c07674

N. Hodnik, G. Dehm, K. J. J. Mayrhofer, Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research, Accounts of Chemical Research 49 (2016) 2015-2022. https://doi.org/10.1021/acs.accounts.6b00330

H. Cheng, S. Wang, G. Chen, Z. Liu, D. Caracciolo, M. Madiou, S. Shan, J. Zhang, H. He, R. Che, C. Zhong, Insights into Heterogeneous Catalysts under Reaction Conditions by In Situ/Operando Electron Microscopy, Advanced Energy Materials 12 (2022) 2202097. https://doi.org/10.1002/aenm.202202097

Q. Fu, L. W. Wong, F. Zheng, X. Zheng, C. S. Tsang, K. H. Lai, W. Shen, T. H. Ly, Q. Deng, J. Zhao, Unraveling and leveraging in situ surface amorphization for enhanced hydrogen evolution reaction in alkaline media, Nature Communications 14 (2023) 6462. https://doi.org/10.1038/s41467-023-42221-6

R. M. Kluge, R. W. Haid, I. E. L. Stephens, F. Calle-Vallejo, A.S. Bandarenka, Monitoring the active sites for the hydrogen evolution reaction at model carbon surfaces, Physical Chemistry Chemical Physics 23 (2021) 10051-10058. https://doi.org/10.1039/d1cp00434d

M. Lunardon, T. Kosmala, C. Durante, S. Agnoli, G. Granozzi, Atom-by-atom identification of catalytic active sites in operando conditions by quantitative noise detection, Joule 6 (2022) 617-635. https://doi.org/10.1016/j.joule.2022.02.010

D. Wang, J. Wu, L. Jiao, L. Xie, In situ identification of active sites during electrocatalytic hydrogen evolution, Nano Research 16 (2023) 12910-12918. https://doi.org/10.1007/s12274-023-5686-y

D. Valavanis, P. Ciocci, I. J. McPherson, G. N. Meloni, J.-F. Lemineur, F. Kanoufi, P. R. Unwin, Operando Electrochemical and Optical Characterization of the Meniscus of Scanning Electrochemical Cell Microscopy (SECCM) Probes, ACS Electrochemistry (2024) https://doi.org/10.1021/acselectrochem.4c00029 .

P. Ciocci, J.-F. Lemineur, J.-M. Noël, C. Combellas, F. Kanoufi, Differentiating electrochemically active regions of indium tin oxide electrodes for hydrogen evolution and reductive decomposition reactions. An in situ optical microscopy approach, Electrochimica Acta 386 (2021) 138498. https://doi.org/10.1016/j.electacta.2021.138498

Z.-H. Xie, Z. Jiang, X. Zhang, Promises and Challenges of In Situ Transmission Electron Microscopy Electrochemical Techniques in the Studies of Lithium Ion Batteries, Journal of The Electrochemical Society 164 (2017) A2110-A2123. https://doi.org/10.1149/2.1451709jes

A. R. Kamšek, F. Ruiz-Zepeda, A. Pavlišič, A. Hrnjić, N. Hodnik, Bringing into play automated electron microscopy data processing for understanding nanoparticulate electrocatalysts’ structure-property relationships, Current Opinion in Electrochemistry 35 (2022) 101052. https://doi.org/10.1016/j.coelec.2022.101052

Published

25-12-2024

How to Cite

Nsabimana, A., Guan, Y., & Xu, G. (2024). In situ and operando characterization techniques for nanocatalyst-based electrochemical hydrogen evolution reactions: Review paper. Journal of Electrochemical Science and Engineering, 2526. https://doi.org/10.5599/jese.2526

Issue

Section

RSE SEE 9 Special Issue

Funding data