Al-Mg electrodeposition using chloride-based molten salts
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2518Keywords:
Aluminum, magnesium, potentiostatic deposition, morphology, composition, scheme
Abstract
Al-Mg alloys were potentiostatically electrodeposited from electrolyte with AlCl3, NaCl, KCl and MgCl2 at 180 °C for aircraft applications. The electrode setup includes a Cu cathode, Pt-mesh anode, and Al-rod pseudo-reference electrode. Cyclic voltammetry (CV) reveals the Al deposition sources as Al2Cl7-and AlCl4-. The Mg deposition source can be a reaction between Al2Cl7- and MgCl2 and MgCl2 dissociation (both releasing Mg2+). Depositions at overpotentials: -1.03, -1.05, -1.06, and -1.10 V show current density-time curves with almost steady-state j, indicating planar diffusional growth. This is confirmed by layer-like morphologies with near-globular growth features. The average feature size decreases to -1.06 V and increases slightly at -1.10 V due to further deposition over the existing features. The deposit composition (Mg content) increases from 0.36 to 5.68 at.% from -1.03 to -1.10 V. Such a wide range of Mg content is obtained through minimal compositional changes in spent electrolytes, indicating the ease of less-noble Mg deposition. Al-Mg deposition scheme is devised with Al and Mg deposition perceived as Al3+ + 3e- Al and Mg2+ + 2e- Mg; and 2Cl- Cl2(↑)+ 2e- supplying electrons for deposition.
Downloads
References
W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge. Recent development in aluminium alloys for the automotive industry. Materials Science & Engineering A A280 (2000) 37-49. https://doi.org/10.1016/S0921-5093(99)00653-X
E. Georgantzia, M. Gkantou, G.S. Kamaris. Aluminium alloys as structural material: A review of research. Engineering Structures 227 (2021) 111372 https://doi.org/10.1016/j.engstruct.2020.111372
S. V. Kozhukharov, C. Girginov, S. Portolesi, A. Tsanev, V. Lilova, M. Georgieva, E. Lilov, P. Petkov. Sealing of cerium oxide coating primers on anodized AA2024-T3 alloy by boiling in Lourier buffers. Journal of Electrochemical Science and Engineering 14 (2024) 559-582. https://doi.org/10.5599/jese.1949
C. Kammer, Aluminum and aluminum alloys, in Springer Handbook of Materials Data, W. Martinessen, H. Warlimont, Eds., Springer Nature, Switzerland, 2018, p. 157 https://doi.org/10.1007/978-3-319-69743-7
K. K. Sankaran, R. S. Mishra, Metallurgy and Design of Alloys with Hierarchical Microstructures, Elsevier, 2017, p. 57. ISBN 978-0-12-812068-2
M. Leary, Materials selection and substitution using aluminium alloys, in Fundamentals of Aluminium Metallurgy: Production, Processing and Applications, M. Leary, Ed., Woodhead Publishing Limited, 2010, p. 784 https://doi.org/10.1533/9780857090256.3.784
I. C. Park, S. J. Kim. Electrochemical characteristics in seawater for cold thermal spray-coated Al-Mg alloy layer, Acta Metallurgica Sinica (English Letters) 29 (2016) 727-734 https://doi.org/10.1007/s40195-016-0437-7
M. Ueda. Overview over studies of electrodeposition of Al or Al alloys from low temperature chloroaluminate molten salts. Journal of Solid State Electrochemistry 21 (2017) 641-647 https://doi.org/10.1007/s10008-016-3428-8
S.S. V. Tatiparti, F. Ebrahimi. An understanding of the electrodeposition process of Al-Mg alloys using an organometallic-based electrolyte. Journal of Applied Electrochemistry 40 (2010) 2091-2098 https://doi.org/10.1007/s10800-010-0190-y
H. Lehmkuhl, K. Mehler, B. Reinhold, H. Bongard, B. Tesche. Deposition of Aluminum-Magnesium Alloys from Electrolytes Containing Organo-Aluminum Complexes. Advances in Engineering Materials 3 (2001) 412-417 https://doi.org/1438-1656/01/0606-0412
A. Mayer. Electrodeposition of Aluminum, Aluminum/Magnesium Alloys, and Magnesium from Organometallic Electrolytes. Journal of the Electrochemical Society 137 (1990) 2806-2809. https://doi.org/10.1149/1.2087078
M. Morimitsu, T. Tanaka, M. Matsunaga, Electrodeposition of Al-Mg Alloys from Lewis acidic AlCl3-EMIC-MgCl2 room temperature molten salts, Electrochemical Society Proce-edings Series, Molten Salts XIII: Proceedings of the international symposium, United States of America, 2002, p. 671-676. https://www.electrochem.org/dl/ma/201/pdfs/1459.pdf
Y. Li, P. Zhao, Y. Dai, M. Yao, H. Gan, W. Hu. Electrochemical deposition of Al-Mg alloys on tungsten wires from AlCl3-NaCl-KCl melts. Fusion Engineering and Design 103 (2016) 8-12 https://doi.org/10.1016/j.fusengdes.2015.11.053
M. Morimitsu, N. Tanaka, M. Matsunaga. Induced Codeposition of Al-Mg Alloys in Lewis acidic AlCl3-EMIC room temperature molten salts. Chemistry Letters (2000) 1028-1029. https://doi.org/10.1246/cl.2000.1028
M.R. Ali, A. P. Abbott, K.S. Ryder. Electrodeposition of Al-Mg Alloys from Acidic AlCl3-EMIC-MgCl2 room temperature ionic liquids. Journal of Electrochemistry 21 (2015) 172-180 https://doi.org/10.13208/j.electrochem.140603
H-M. Kan, S-S. Zhu, N. Zhang, X-Y. Wang. Electrodeposition of aluminum and aluminum—magnesium alloys at room temperature. Journal of Central South University 22 (2015) 3689-3697 https://doi.org/10.1007/s11771-015-2911-1
L. Shen, B. Cui, S. Li, Y. Lei, Z. Shi. Electrodeposition of Al-Mg coating in the electrolyte system of C4H8O-C6H6-LiAlH4-AlCl3-MgX2 (X=Cl, Br). Journal of Materials Research and Technology 22 (2023) 1349-1361 https://doi.org/10.1016/j.jmrt.2022.12.018
S.S.V. Tatiparti, F. Ebrahimi. Electrodeposition of Al-Mg alloy powders. Journal of the Electrochemical Society 155 (2008) D363-D368 https://doi.org/10.1149/1.2885016
X. Zhang, A. Liu, F. Liu, Z. Shi, B. Zhang, X. Wang. Electrodeposition of aluminum-magnesium alloys from an aluminum-containing solvate ionic liquid at room temperature. Electrochemical Communications 133 (2021) 107160 https://doi.org/10.1016/j.elecom.2021.107160
A. Mayer, Electrodeposition of aluminum, aluminum/magnesium alloys, and magnesium from organometallic electrolytes, 1. international congress on high-tech-materials and finishing, Berlin, F.R. Germany, 12 -14 March 1989, pp. 1-11. https://www.osti.gov/servlets/purl/6418518
S. S. V. Tatiparti, F. Ebrahimi. The formation of morphologies and microstructures in electrodeposited nanocrystalline Al-Mg alloy powders. Journal of The Electrochemical Society 157 (2010) E167-E171 https://doi.org/10.1149/1.3468939
S. S. V. Tatiparti, F. Ebrahimi. Preferred orientation and shape of electrodeposited nanocrystalline Al-Mg alloy dendrites. Materials Letters 65 (2011) 1915-1918 https://doi.org/10.1016/j.matlet.2011.04.018
S. S. V. Tatiparti. Extended solubility in the electrodeposited nanocrystalline Al-Mg alloy dendrites. Materials Letters 65 (2011) 3173-3175 https://doi.org/10.1016/j.matlet.2011.06.112
G. R. Stafford, T. Tsuda, C. L. Hussey. The structure of electrodeposited aluminum alloys from chloroaluminate ionic liquids: Let’s not ignore the temperature. ECS Transactions 64 (2014) 535-547 https://doi.org/10.1149/06404.0535ecst
G. R. Stafford, G.M. Haarberg. The electrodeposition of AI-Nb alloys from chloroaluminate electrolytes, Plasmas & Ions 1 (1999) 35-44. https://doi.org/10.1016/S1288-3255(99)80010-0
C. G. Fink, D. N. Solanki. Aluminum from a Fused Chloride Bath. ECS Transactions 91 (1947) 203-219 https://doi.org/10.1149/1.3071777
R. C. Howie, D. W. Macmillan. The electrodeposition of aluminium from molten aluminium chloride/sodium chloride. Journal of Applied Electrochemistry 2 (1972) 217-222. https://doi.org/10.1007/BF02354979
B. Nayak, M. M. Misra. The electrodeposition of aluminium on brass from a molten aluminium chloride-sodium chloride bath. Journal of Applied Electrochemistry 7 (1977) 45-50. https://doi.org/10.1007/BF00615529
H-M. Kan, Z-W. Wang, X-Y. Wang, N. Zhang. Electrochemical deposition of aluminum on W electrode from AlCl3-NaCl melts. Transactions of Nonferrous Metals Society of China (English Edition) 20 (2010) 158-164 https://doi.org/10.1016/S1003-6326(09)60114-X
G. R. Stafford. The electrodeposition of Al3Ti from chloroaluminate electrolytes. Journal of the Electrochemical Society 141(4) (1994) 945-953. https://doi.org/10.1149/1.2054863
G. T. Cheek, W. O’Grady, S. Z. El Abedin, E. M. Moustafa, F. Endres. Electrochemical studies of magnesium deposition in ionic liquids. ECS Transactions 3 (2007) 269-279 https://doi.org/10.1149/1.2798670
T. Watkins, A. Kumar, D. A. Buttry. Designer ionic liquids for reversible electrochemical deposition/dissolution of magnesium. Journal of American Chemical Society 138 (2016) 641-650 https://doi.org/10.1021/jacs.5b11031
A. M. Martı́nez, B. Børresen, G. M. Haarberg, Y. Castrillejo, R. Tunold. Electrodeposition of magnesium from CaCl2-NaCl-KCl-MgCl2 melts. Journal of the Electrochemical Society 151 (2004) C508-C513 https://doi.org/10.1149/1.1758814
B. Bøsrresen, G.M. Haarberg, R. Tunold. Electrodeposition of magnesium from halide melts-charge transfer and diffusion kinetics. Electrochimica Acta 42 (1997) 1613-1622 https://doi.org/10.1016/S0013-4686(96)00322-2
M. Pise, M. Muduli, A. Chatterjee, B. P. Kashyap, R. N. Singh, S. S. V. Tatiparti. Instantaneous-Progressive nucleation and growth of pal ladium during electrodeposition. Results in Surfaces and Interfaces 6 (2022) 100044 https://doi.org/10.1016/j.rsurfi.2022.100044
F. C. Walsh, M. E. Herron. Electrocrystallization and electrochemical control of crystal growth: Fundamental considerations and electrodeposition of metals. Journal of Physics D: Applied Physics 24 (1991) 217-225 https://doi.org/10.1088/0022-3727/24/2/019
S. S. V. Tatiparti, F. Ebrahimi. Potentiostatic versus galvanostatic electrodeposition of nanocrystalline Al-Mg alloy powders. Journal of Solid State Electrochemistry 16 (2012) 1255-1262 https://doi.org/10.1007/s10008-011-1522-5
J. L Murray, The Al−Mg (Aluminum−Magnesium) system, Bulletin of Alloy Phase Diagrams, (3) 1982, 60-74. https://doi.org/10.1007/BF02873413
A. Brenner, Practical Considerations Involved in the Electrodeposition of Alloys in Electro-deposition of Alloys, Principles and Practice, Volume I, Academic Press, New York, United States of America, 1963, p.44. https://doi.org/10.1016/B978-1-4831-9808-8.50011-3
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Department of Science and Technology, Ministry of Science and Technology, India
-
Impacting Research Innovation and Technology
Grant numbers IMP/2019/000241