Synthesis and electrochemical characterization of sulfur-doped Li3PO4 for all-solid-state battery applications
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2498Keywords:
Lithium ion battery, solid-state electrolyte, lithium superionic conductor, ionic conductivity, anion doping
Abstract
Isovalent and aliovalent cation-doping have been widely investigated to enhance ion transport in γ‑Li3PO4-type lithium superionic conductors (LISICONs). Anion doping, however, has been restricted to a full replacement of oxide ions by sulfide ions in some compounds (the so-called thio-LISICONs). The replacement of oxide ions by sulfide ions enhances both ion conductivity and deformability of the materials. Similar to other sulfide-type solid-electrolytes, thio-LISICONs, however, showed limited electrochemical stability against oxidation. In this report, a sonication-assisted liquid-phase synthesis approach was employed to achieve substantial sulfur‑oxygen mixing in γ-type Li3PO4. Sulfur-doped Li3PO4 possessed an ion conductivity four orders of magnitude higher than that of γ-Li3PO4, and a notably low activation energy of ion transport of 0.40(8) eV. Sulfur-oxygen mixing in sulfur-doped Li3PO4 enhanced electrochemical stability against oxidation (up to 4 V vs. Li+/Li) compared with sulfur-based Li3PS4. This study paves the way for developing mixed-anion phases in the γ-type Li3PO4 structure with enhanced electrochemical properties for all-solid-state battery applications.
Downloads
References
J. Janek, W. G. Zeier, A solid future for battery development, Nature Energy 1 (2016) 16141. https://doi.org/10.1038/nenergy.2016.141
J. Janek, W. G. Zeier, Challenges in speeding up solid-state battery development, Nature Energy 8 (2023) 230-240. https://doi.org/10.1038/s41560-023-01208-9.
Y. Zhu, X. He, Y. Mo, Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations, ACS Applied Materials & Interfaces 7 (2015) 23685-23693. https://doi.org/10.1021/acsami.5b07517
T. Thompson, S. Yu, L. Williams, R. D. Schmidt, R. Garcia-Mendez, J. Wolfenstine, J. L. Allen, E. Kioupakis, D. J. Siegel, J. Sakamoto, Electrochemical Window of the Li-Ion Solid Electrolyte Li7La3Zr2O12, ACS Energy Letters 2 (2017) 462-468. https://doi.org/10.1021/acsenergylett.6b00593
C. Wang, K. Fu, S. P. Kammampata, D. W. McOwen, A. J. Samson, L. Zhang, G. T. Hitz, A. M. Nolan, E. D. Wachsman, Y. Mo, V. Thangadurai, L. Hu, Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries, Chemical Reviews 120 (2020) 4257-4300. https://doi.org/10.1021/acs.chemrev.9b00427
K. Suzuki, M. Kamiya, N. Matsui, S. Hori, M. Hirayama, R. Kanno, Synthesis and Electrochemical Properties of Quaternary and Quinary γ-Li3PO4-Type Materials: Effects of Compositional Complexity in Lithium Superionic Conductors, Journal of Physical Chemistry C 127 (2023) 10947-10952. https://doi.org/10.1021/acs.jpcc.3c01765
H. El-Shinawi, E. J. Cussen, S. A. Cussen, Morphology-controlled synthesis of novel nanostructured Li4P2O7 with enhanced Li-ion conductivity for all-solid-state battery applications, Dalton Transactions 53 (2024) 4139-4146. https://doi.org/10.1039/D3DT04377K
H. El-Shinawi, E. J. Cussen, S. A. Cussen, A new nanostructured γ-Li3PO4/GeO2 composite for all-solid-state Li-ion battery applications, Dalton Transactions 53 (2024) 10666-10674. https://doi.org/10.1039/D4DT01423E
G. Zhao, K. Suzuki, M. Yonemura, M. Hirayama, R. Kanno, Enhancing fast lithium ion conduction in Li4GeO4−Li3PO4 solid electrolytes, ACS Applied Energy Materials 2 (2019) 6608-6615. https://doi.org/10.1021/acsaem.9b01152
G. Zhao, K. Suzuki, T. Seki, X. Sun, M. Hirayama, R. Kanno, High lithium ionic conductivity of γ-Li3PO4-type solid electrolytes in Li4GeO4−Li4SiO4–Li3VO4 quasi-ternary system, Journal of Solid State Chemistry 292 (2020) 121651. https://doi.org/10.1016/j.jssc.2020.121651
G. Zhao, K. Suzuki, T. Okumura, T. Takeuchi, M. Hirayama, R. Kanno, Extending the Frontiers of Lithium-Ion Conducting Oxides: Development of Multicomponent Materials with γ-Li3PO4-Type Structures, Chemistry of Materials 34 (2022) 3948-3959. https://doi.org/10.1021/acs.chemmater.1c04335
R. Kanno, T. Hata, Y. Kawamoto, M. Irie, Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system, Solid State Ionics 130 (2000) 97-104. https://doi.org/10.1016/S0167-2738(00)00277-0
R. Kanno, M. Murayama, Lithium ionic conductor thio-LISICON: the Li2S−GeS2−P2S5 system, Journal of The Electrochemical Society 148 (2001) A742. https://doi.org/10.1149/1.1379028
X. Wang, R. Xiao, H. Li, L. Chen, Oxygen-Driven Transition from Two-Dimensional to Three-Dimensional Transport Behaviour in β-Li3PS4 Electrolyte, Physical Chemistry Chemical Physics 18 (2016) 21269-21277. https://doi.org/10.1039/C6CP03179J
S. Banerjee, M. L. Holekevi Chandrappa, S. P. Ong, Role of Critical Oxygen Concentration in the β-Li3PS4–xOx Solid Electrolyte, ACS Applied Energy Materials 5 (2022) 35-41. https://doi.org/10.1021/acsaem.1c03795
N. J. J. De Klerk, E. Van Der Maas, M. Wagemaker, Analysis of Diffusion in Solid-State Electrolytes through MD Simulations, Improvement of the Li-Ion Conductivity in β-Li3PS4 as an Example, ACS Applied Energy Materials 1 (2018) 3230-3242. https://doi.org/10.1021/acsaem.8b00457
K. Takada, M. Osada, N. Ohta, T. Inada, A. Kajiyama, H. Sasaki, S. Kondo, M. Watanabe, T. Sasaki, Lithium ion conductive oxysulfide, Li3PO4–Li3PS4, Solid State Ionics 176 (2005) 2355-2359. https://doi.org/10.1016/j.ssi.2005.03.023
K. Suzuki, M. Sakuma, S. Hori, T. Nakazawa, M. Nagao, M. Yonemura, M. Hirayama, R. Kanno, Synthesis, structure, and electrochemical properties of crystalline Li–P–S–O solid electrolytes: Novel lithium-conducting oxysulfides of Li10GeP2S12 family, Solid State Ionics 288 (2016) 229-234. https://doi.org/10.1016/j.ssi.2016.02.002
A. Neveu, V. Pelé, C. Jordy, V. Pralong, Exploration of Li–P–S–O composition for solid-state electrolyte materials discovery, Journal of Power Sources 467 (2020) 228250. https://doi.org/10.1016/j.jpowsour.2020.228250
M. J. Deck, P. Chien, T. P. Poudel, Y. Jin, H. Liu, Y. Hu, Oxygen-Induced Structural Disruption for Improved Li+ Transport and Electrochemical Stability of Li3PS4, Advanced Energy Materials 14 (2023) 2302785. https://doi.org/10.1002/aenm.202302785
A. Miura, N. C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N. H. H. Phuc, A. Matsuda, N. Machida, A. Hayashi, M. Tatsumisago, Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery, Nature Reviews Chemistry 3 (2019) 189-198. https://doi.org/10.1038/s41570-019-0078-2
Z. Liu, W. Fu, E. A. Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J. Rondinone, C. Liang, Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4, Journal of the American Chemical Society 135 (2013) 975-978. https://doi.org/10.1021/ja3110895
A. L. Santhosha, L. Medenbach, J. R. Buchheim, P. Adelhelm, The indium-lithium electrode in solid-state lithium-ion batteries: Phase formation, redox potentials, and interface stability. Batteries & Supercaps 2 (2019) 524-529. https://doi.org/10.1002/batt.201800149
J. Li, W. Liu, X. Zhang, Y. Ma, Y. Wei, Z. Fu, J. Li, Y. Yan, Heat treatment effects in oxygen-doped β-Li3PS4 solid electrolyte prepared by wet chemistry method, Journal of Solid State Electrochemistry 25 (2021) 1259-1269. https://doi.org/10.1007/s10008-021-04904-2
B. Wang, B. C. Chakoumakos, B. C. Sales, B. S. Kwak, J. B. Bates, Synthesis, crystal structure and ionic conductivity of polycrystalline lithium phosphorous oxynitride with the γ-Li3PO4 structure, Journal of Solid State Chemistry 115 (1995) 313-323. https://doi.org/10.1006/jssc.1995.1140
C. F. Holder, R. E. Schaak, Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13 (2019) 7359-7365. https://doi.org/10.1021/acsnano.9b05157
C. Sourisseau, R. Cavagnat, M. Fouassier, R. Brec, S.H. Elder, Infrared, Raman, resonance Raman spectra and lattice dynamics calculations of the solid potassium(I) nickel(II) thiophosphate compound, KNiPS4, Chemical Physics 195 (1995) 351-369. https://doi.org/10.1016/0301-0104(95)00083-Z
K. Nakamoto, in: Infrared and Raman spectra of inorganic and coordination compounds, 4th Ed., Wiley-Interscience, Chinchester, 1986.
D. E. C. Corbridge, E. J. Lowe, The infra-red spectra of some inorganic phosphorus compounds, Journal of the Chemical Society (1954) 493-502. https://doi.org/10.1039/JR9540000493
J. T. S. Irvine, D. C. Sinclair, A. R. West, Electroceramics: Characterization by Impedance Spectroscopy, Advanced Materials 2 (1990) 132-138. https://doi.org/10.1002/adma.19900020304
S. Muy, J. C. Bachman, H. H. Chang, L. Giordano, F. Maglia, S. Lupart, P. Lamp, W. G. Zeier, Y. Shao-Horn, Lithium conductivity and Meyer-Neldel rule in Li3PO4-Li3VO4-Li4GeO4 lithium superionic conductors, Chemistry of Materials 30 (2018) 5573-5582. https://doi.org/10.1021/acs.chemmater.8b01504
G. F. Dewald, S. Ohno, M. A. Kraft, R. Koerver, P. Till, N. M. Vargas-Barbosa, J. Janek, W. G. Zeier, Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes, Chemistry of Materials 31 (2019) 8328-8337. https://doi.org/10.1021/acs.chemmater.9b01550
F. Han, Y. Zhu, X. He, Y. Mo, C. Wang, Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes, Advanced Energy Materials 6 (2016) 1501590. https://doi.org/10.1002/aenm.201501590
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Academy of Scientific Research and Technology
Grant numbers RESPECT-10025