Tracking the photoactivity at the interface of SiC/poly(2-(2-thienyl)furan) thin solid film in polymer gel electrolytes

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.2401

Keywords:

Photoelectrochemistry, occlusion electrodeposition, polymer/molecular solid interfaces, theoretical-experimental approach, polymer electrolyte
Graphical Abstract

Abstract

Assemblies made by immobilizing silicon carbide (SiC) nanoparticles into poly(2-(2-thienyl)furan) (PTF) were subjected to optical and electrochemical investigation. The studies show that SiC, a molecular inorganic compound, and PTF produce reproducible photo responses. Optical studies show that the optical band gap of SiC is around 2.5 eV while PTF's is around 2.2 eV. The band gap values suggest these assemblies absorb the visible solar radiation spectra. Electrochemical studies in gel electrolytes indicate that PTF and PTF/SiC under illumination show p-p behavior, where hole accumulation dominates. SiC thin films lack such character. Electrochemical impedance spectroscopy studies revealed that the PTF and PTF/SiC possess both kinetic and diffusional charge transfer properties. The studied assemb­lies, as well as the gel electrolyte, showed stability and resistance to photo­degra­da­tion as evidenced by the regeneration of the same photo response after a longer period of experimentation.

 

Downloads

Download data is not yet available.

References

S. Steinberger, A. Mishra, E. Reinold, J. Levichkov, C. Uhrich, M. Pfeiffer, P. Bäuerle, Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-bandgap ligothiophenes, Chemical Communications 47 (2011) 1982-1984. https://doi.org/10.1039/C0CC04541A

T. Kono, D. Kumaki, J. Nishida, S. Tokito, Y. Yamashita, Dithienylbenzobis (thiadiazole) based organic semiconductors with low LUMO levels and narrow energy gaps, Chemical Communications 46 (2010) 3265-3267. https://doi.org/10.1039/B925151K

A. Mishra, C.-Q. Ma, P. Bäuerle, Functional Oligothiophenes: Molecular Design for Multidimensional Nanoarchitectures and Their Applications, Chemical Reviews 109(3) (2009) 1141-1276. https://doi.org/10.1021/cr8004229

R. Tang, F. Zhang, Y. Fu, Q. Xu, X. Wang, X. Zhuang, D. Wu, A. Giannakopoulos, D. Beljonne, X. Feng, Efficient Approach to Electron-Deficient 1,2,7,8-Tetraazaperylene Derivatives, Organic Letters 16(18) (2014) 4726-4729. https://doi.org/10.1021/ol502109y

T. Torroba, Poly-sulfur-nitrogen heterocycles via sulfur chlorides and nitrogen reagents, Journal für praktische Chemie 341(2) (1999) 99-113. https://doi.org/10.1002/(SICI)1521-3897(199902)341:2%3C99::AID-PRAC99%3E3.0.CO;2-Z

M. Krompiec, S. Krompiec, H. Ignasiak, M. Łapkowski, P. Kuś, Ł. Stanek, R. Penczek, S. Lis, K. Staniński, M. Sajewicz, K. Gębarowska, Synthesis and electropolymerization of 3,5-dithienylpyridines, their complexes and N-methylpyridinium cations, Synthetic Metals 158(21–24) (2008) 831-838. https://doi.org/10.1016/j.synthmet.2008.05.010

L. Akcelrud, Electroluminescent polymers, Progress in Polymer Science 28(6) (2003) 875-962. https://doi.org/10.1016/S0079-6700(02)00140-5

H. Sirringhaus, N. Tessler, R.H. Friend, Integrated Optoelectronic Devices Based on Conjugated Polymers, Science 280 (1998) 1741-1744. https://doi.org/10.1126/science.280.5370.1741

P.R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future, Materials Chemistry and Physics 77(1) (2002) 117-133. https://doi.org/10.1016/S0254-0584(01)00575-2

D.T. McQuade, A.E. Pullen, T.M. Swager, Conjugated Polymer-Based Chemical Sensors, Chemical Reviews 100(7) (2000) 2537-2574. https://doi.org/10.1021/cr9801014

J. Zhang, Y Hao, L Yang, H Mohammadi, N Vlachopoulos, L Sun, A Hagfeldt, E. Sheibani, Electrochemically polymerized poly (3, 4-phenylene-dioxythiophene) as efficient and transparent counter electrode for dye-sensitized solar cells, Electrochimica Acta 300 (2019) 482-488. https://doi.org/10.1016/j.electacta.2019.01.006

A. Malinauskas, Chemical deposition of conducting polymers, Polymer 42 (2001) 3957-3972. https://doi.org/10.1016/S0032-3861(00)00800-4

K. K. Kasem, M. Schiltz, S. H. Osman, Optical and Photoelectrochemical Investigation of Mixed Photoactive Poly 2,2’,5,2’’ ter-thiophene and Poly 2,2 bithiophene. Role of Intermixed Phases Created by the co-electro-polymerization process, International Journal of Chemistry 12(1) (2020) 49. https://doi.org/10.5539/ijc.v12n1p49

S. H. Osman, A. Jeffers, K. K. Kasem, Electrochemical, Optical and Impedance Studies on Photoactive Assemblies Consists of Mixed TiO2-CdS Particles Occluded in Poly 2,2’ Bithiophene in Aqueous Acetate Electrolytes, International Journal of Electrochemical Science 14(12) (2019) 10729-10744. https://doi.org/10.20964/2019.12.58

J. A. Joule, K. Mills, Heterocyclic Chemistry, Wiley- Blackwell Publishing Ltd, 2010. ISBN: 978-1-405-13300-5

H. Zhou, L. Yang, W. You, Rational design of high-performance conjugated polymers for organic solar cells, Macromolecules 45(2) (2012) 607-632. https://doi.org/10.1021/ma201648t

B. Kan, M. Li, Q. Zhang, F. Liu, X. Wan, Y. Wang, W. Ni, G. Long, X. Yang, H. Feng, Y. Zuo, M. Zhang, F. Huang, Y. Cao, T. Russell, Y. Chen, A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency, Journal of the American Chemical Society 137(11) (2015) 3886-3893. https://doi.org/10.1021/jacs.5b00305

B. Guo, X. Guo, W. Li, X. Meng, W. Ma, M. Zhang, Y. Li, A wide-band gap conjugated polymer for highly efficient inverted single and tandem polymer solar cells, Journal of Materials Chemistry A 4(34) (2016) 13251-13258. https://doi.org/10.1039/C6TA04950H

M. Suda, A New Photo-Control Method for Organic/Inorganic Interface Dipoles and Its Application to Photo-Controllable Molecular Devices, Bulletin of the Chemical Society of Japan 91 (2018) 19-28. https://doi.org/10.1246/bcsj.20170283

M. O. Rodrigues, V. G. Isoppo, A. V. Moro, F. S. Rodembusch, Photoactive organic-inorganic hybrid materials: From silylated compounds to optical applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 51 (2022) 100474. https://doi.org/10.1016/j.jphotochemrev.2021.100474

K. K. Kasem, S. Menges, S. Jones, Photoelectrochemical studies on poly[1-(2-aminophenyl)pyrrole] - Creation of a photoactive inorganic–organic semiconductor interface (IOI), Canadian Journal of Chemistry 87(8) (2009) 1109-1116. https://doi.org/10.1139/V09-079

K. K. Kasem, H. Worley, M. Elmasry, Optical and Photoelectrochemical Studies on Photoactive Inorganic/Organic/Organic/ Interface Assemblies of CdS/poly 3-(2-thienyl) aniline/poly2,2 Bithiophene, Advanced Composites and Hybrid Materials 1 (2018) 748-758. https://doi.org/10.1007/s42114-018-0055-0

B. N. Pushpakaran, A. S. Subburaj, S. B. Bayne, J. Mookken, Impact of silicon carbide semiconductor technology in Photovoltaic Energy System, Renewable and Sustainable Energy Reviews 55 (2016) 971-989. https://doi.org/10.1016/j.rser.2015.10.161

Y. Zhang, Y. Zhang, X. Li, J. Dai, F. Song, X. Cao, X. Lyu, J. C. Crittenden, Enhanced Photocatalytic Activity of SiC-Based Ternary Graphene Materials: A DFT Study and the Photocatalytic Mechanism, ACS Omega 2019 4(23) (2019) 20142-20151. https://doi.org/10.1021/acsomega.9b01832

K. K. Kasem, J. Pu, L. Cox, Photoactivities of Thiophene Monomer/Polymer Transition in Gel–Based Photoelectrochemical Assembly: A Theoretical/Experimental Approach, International Journal of Electrochemical Science 18(4) (2023) 100077. https://doi.org/10.1016/j.ijoes.2023.100077

J. H. Wu, S. C. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fang, S. Yin, T. Sato, A Thermoplastic Gel Electrolyte for Stable Quasi-Solid-State Dye-Sensitized Solar Cells, Advanced Functional Materials 17(15) (2007) 2645-2652. https://doi.org/10.1002/adfm.200600621

F. Neese, Software update: The ORCA program system—Version 5.0, WIREs Computational Molecular Science 12(5) (2022) e1606. https://doi.org/10.1002/wcms.1606

G. Knizia, Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts, Journal of Chemical Theory and Computation 9(11) (2013) 4834-4843. https://doi.org/10.1021/ct400687b

J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Materials Research Bulletin 3(1) (1968) 37-46. https://doi.org/10.1016/0025-5408(68)90023-8

T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms, Physica 1 (1–6) (1934) 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2

M. Mobin, R. Aslam, J. Aslam, Synergistic effect of cationic gemini surfactants and butanol on the corrosion inhibition performance of mild steel in acid solution, Materials Chemistry and Physics 223 (2019) 623-633. https://doi.org/10.1016/j.matchemphys.2018.11.032

C. Langpoklakpam, A. C. Liu, K. H. Chu, L. H. Hsu, W. C. Lee, S. C. Chen, C. W. Sun, M. H. Shih, K. Y. Lee, H. C. Kuo. Review of Silicon Carbide Processing for Power MOSFET, Crystals 12(1) (2022) 245. https://doi.org/10.3390/cryst12020245

J. Jian, J. Sun, A Review of Recent Progress on Silicon Carbide for Photoelectro-chemical Water Splitting, Solar RRL 4(7) (2020) 2000111. https://doi.org/10.1002/solr.202000111

P. Sharma, S.C. Katyal, Effect of Cd and Pb impurities on the optical properties of fresh evaporated amorphous (As2Se3)90Ge10 thin films, Journal of Physics D: Applied Physics 40(7) (2007) 2115. https://doi.org/10.1088/0022-3727/40/7/038

T. C. Sabari Girisun, S. Dhanushkodi, Linear and nonlinear optical properties of tris thiourea zinc sulphate single crystals, Crystal Research & Technology 44(12) (2009) 1297-1302. https://doi.org/10.1002/crat.200900351

H. Wei, H. Eilers, Electrical conductivity of thin-film composites containing silver nanoparticles embedded in a dielectric fluropolymer matrix, Thin Solid Films 517(2) (2008) 575-581. https://doi.org/10.1016/j.tsf.2008.06.093

F. Spadavecchia, S. Ardizzone, G. Cappelletti, L. Falciola, M. Ceotto, D. Lotti, Journal of Applied Electrochemistry 43 (2013) 217-225. https://doi.org/10.1007/s10800-012-0485-2

E. Go, H. Jin, S. Yoon, S. Park, S.H. Park, H. Yu, H.J. Son, Unraveling the Origin of Dark Current in Organic Bulk Heterojunction Photodiodes for Achieving High Near-Infrared Detectivity, ACS Photonics 9(6) (2022) 2056-2065. https://doi.org/10.1021/acsphotonics.2c00193

C. Li, Y. Bando, M. Liao, Y. Koide, D. Golberg, Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire, Applied Physics Letters 97 (2010) 161102. https://doi.org/10.1063/1.3491212

H. Kaiser K. D. Beccu, M. A. Gutjahr, Abschätzung der porenstruktur poröser elektroden aus impedanzmessungen, Electrochimica Acta 21 (1976) 539-543. https://doi.org/10.1016/0013-4686(76)85147-X

K.K. Kasem, M. Tom, M. Tahir, L. Cox, Electrochemical and optical studies on photoactive BiVO4-TiO2/poly 3,4-ethylenedioxythiophene assemblies in gel electrolyte: Role of inorganic/organic interfaces in surface functionalization, Journal of Electrochemical Science and Engineering 13(6) (2023) 1037-1050. https://doi.org/10.5599/jese.1951

Published

31-08-2024 — Updated on 31-08-2024

How to Cite

Kasem, K., Masuda, H., & Mendez Rodriguez, A. (2024). Tracking the photoactivity at the interface of SiC/poly(2-(2-thienyl)furan) thin solid film in polymer gel electrolytes : Original scientific paper. Journal of Electrochemical Science and Engineering, 14(5), 671–684. https://doi.org/10.5599/jese.2401

Issue

Section

Physical electrochemistry