Extended characteristic polynomial estimating the electrochemical behaviour of some 4-(azulen-1-yl)-2,6-divinylpyridine derivatives

Original scientific paper

Authors

  • Eleonora-Mihaela Ungureanu Doctoral School of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA, Bucharest, Romania https://orcid.org/0000-0001-7208-8724
  • Amalia Ștefaniu National Institute of Chemical, Pharmaceutical Research and Development, Bucharest, Romania https://orcid.org/0000-0002-7254-7991
  • Raluca Isopescu Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA, Bucharest, Romania https://orcid.org/0000-0002-2255-2696
  • Cornelia-Elena Mușina Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA, Bucharest, Romania
  • Magdalena-Rodica Bujduveanu Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA, Bucharest, Romania https://orcid.org/0000-0002-1566-0736
  • Lorentz Jäntschi Department of Physics and Chemistry, Technical University of Cluj-Napoca, Romania and Laboratory of Electrochemistry For Advanced Materials, Technical University of Cluj-Napoca, Cluj-Napoca, Romania https://orcid.org/0000-0001-8524-743X

DOI:

https://doi.org/10.5599/jese.2374

Keywords:

Oxidation potential, reduction potential, structure - activity relationship, eigenproblem
Graphical Abstract

Abstract

Six derivatives of 4-(azulen-1-yl)-2,6-divinylpyridine were the subject of experimental determination of oxidation and reduction potentials being reported elsewhere. In this paper, a computational study was employed in order to obtain a function of structure for these potentials. The geometry was optimized at three theory levels (MMFF94, B3LYP and M06), and the following analysis was conducted with the separately saved optimum geometry in each instance. Two families of molecular descriptors (FMPI and EChP) were used to derive structure-based descriptors. Simple linear regressions were extracted with the best of descriptors for each family and level of theory for both potentials. The study revealed that the MMFF94 optimum geometries best explained the selected electro­chemical properties. Furthermore, the EChP family of descriptors, much bigger than FMPI (about 64 times), was able to better explain the connection between the structure and the property. Once more, it has been shown that the eigenproblem has deep roots in structural chemistry.

Downloads

Download data is not yet available.

References

M. D. Hill. Recent strategies for the synthesis of pyridine derivatives. Chemistry - A European Journal 16 (2010) 12052-12062. http://doi.org/10.1002/chem.201001100

C. Pang, Y. Xu, X. Ma, S. Li, S. Zhou, H. Tian, M. Wang, B. Han. Design, synthesis, and evaluation of novel arecoline-linked amino acid derivatives for insecticidal and antifungal activities, Scientific Reports 14 (2024). http://doi.org/10.1038/s41598-024-60053-2

M. Feng, B. Gao, D. Ruiz, L. R. Garcia, Q. Sun. Bacterial vitamin b6 is required for postembryonic development in c. elegans, Communications Biology 7 (2024). http://doi.org/10.1038/s42003-024-05992-2

M. Kang, H. Wang, C. Chen, R. Suo, J. Sun, Q. Yue, Y. Liu. Analytical strategies based on untargeted and targeted metabolomics for the accurate authentication of organic milk from jersey and yak, Food Chemistry X 19 (2023). http://doi.org/10.1016/j.fochx. 2023.100786

H. Svensen. Synthesis and Functionalization of 3-Nitropyridines. Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norwey (2001). http://hdl.handle.net/11250/244442

Changgeng Qian, Tongchuan Li, T. Shen, L. Libertine-Garahan, J. Eckman, T. Biftu, S. Ip. Epibatidine is a nicotinic analgesic, European Journal of Pharmacology 250 (1993) R13-R14. https://doi.org/10.1016/0014-2999(93)90043-H

A. Steiner, J. M. Mayer, B. Testa. Nicotinate esters: their binding to and hydrolysis by human serum albumin, Journal of Pharmacy and Pharmacology 44 (1992) 745-749. http://doi.org/10.1111/j.2042-7158.1992.tb05512.x

J. S. Finch, T. J. DeKornfeld. Clonixin: A clinical evaluation of a new oral analgesic, The Journal of Clinical Pharmacology and New Drugs 11 (1971) 371-377. http://doi.org/10.1177/009127007101100508

Z. Tilyabaev, A. A. Abduvakhabov. Alkaloids of anabasis aphylla and their cholinergic activities, Chemistry of Natural Compounds 34 (1998) 295-297. https://doi.org/10.1007/ BF02282405

A. S. Leal, K. Zydeck, S. Carapellucci, L. A. Reich, D. Zhang, J. A. Moerland, M. B. Sporn, K. T. Liby. Retinoid x receptor agonist lg100268 modulates the immune microenvironment in preclinical breast cancer models, NPJ Breast Cancer 5 (2019) 39. http://doi.org/10.1038/s41523-019-0135-5

E. M. A. Antibacterial evaluation and molecular properties of pyrazolo[3,4-b]pyridines and thieno[2,3-b] pyridines, Journal of Applied Pharmaceutical Science 11 (2021) 118-124. https://doi.org/10.7324/JAPS.2021.110614

T. J. Donohoe, C. R. Jones, A. F. Kornahrens, L. C. A. Barbosa, L. J. Walport, M. R. Tatton, M. O’Hagan, A. H. Rathi, D. B. Baker. Total synthesis of the antitumor antibiotic (±)- streptonigrin: First- and second-generation routes for de novo pyridine formation using ring-closing metathesis, Journal of Organic Chemistry 78 (2013) 12338-12350. https://doi.org/10.1021/jo402388f

H. Hoehn, I. Polacek, E. Schulze. Potential antidiabetic agents. pyrazolo[3,4-b]pyridines, Journal of Medicinal Chemistry 16 (1973) 1340-1346. https://doi.org/10.1021/jm00270a006

M. Croisy-Delcey, A. Croisy, D. Carrez, C. Huel, A. Chiaroni, P. Ducrot, E. Bisagni, L. Jin, G. Leclercq. Diphenyl quinolines and isoquinolines: synthesis and primary biological evaluation, Bioorganic & Medicinal Chemistry 8 (2000) 2629-2641. https://doi.org/10.1016/S0968-0896(00)00194-2

A. Özdemir, G. Turan-Zitouni, Z. Asım Kaplancıklı, G. İşcan, S. Khan, F. Demirci. Synthesis and the selective antifungal activity of 5,6,7,8-tetrahydroimidazo[1,2-a]pyridine derivatives, European Journal of Medicinal Chemistry 45 (2010) 2080-2084. https://doi.org/10.1016/j.ejmech.2009.12.023

M. Koudad, S. Dadou, F. Abrigach, A. E. Aatiaoui, M. Azzouzi, A. Oussaid, N. Benchat, M. Allali, K. Karrouchi. Synthesis and antimicrobial, antioxidant, ADME-T, and molecular docking studies of imidazo[1,2-a]pyridine derivatives, Russian Journal of Organic Chemistry 59 (2023) 1237-1247. https://doi.org/10.1134/S1070428023070163

P. Makam, R. Kankanala, A. Prakash, T. Kannan. 2-(2-hydrazinyl)thiazole derivatives: Design, synthesis and in vitro antimycobacterial studies, European Journal of Medicinal Chemistry 69 (2013) 564-576. https://doi.org/10.1016/j.ejmech.2013.08.054

V. Reddy, A. S. Jadhav, R. Vijaya Anand. A room-temperature protocol to access isoquinolines through ag(i) catalysed annulation of o-(1-alkynyl)arylaldehydes and ketones with nh4oac: elaboration to berberine and palmatine, Organic and Biomolecular Chemistry 13 (2015) 3732-3741. http://dx.doi.org/10.1039/C4OB02641A

I. Boček Pavlinac, L. Persoons, D. Daelemans, K. Starčević, R. Vianello, M. Hranjec. Novel acrylonitrile derived imidazo[4,5-b]pyridines as antioxidants and potent antiproliferative agents for pancreatic adenocarcinoma, International Journal of Biological Macromolecules 266 (2024) 131239. https://doi.org/10.1016/j.ijbiomac.2024.131239

S. Marın, R. Ibarra, M. Medina, P. Jansen. Sensitivity of caligus rogercresseyi (boxshall and bravo 2000) to pyrethroids and azamethiphos measured using bioassay tests—a large scale spatial study, Preventive Veterinary Medicine 122 (2015) 33-41. https://doi.org/10.1016/j.prevetmed.2015.09.017

M. Ferrari. Effects of papaverine on smooth muscle and their mechanisms, Pharmacological Research Communications 6 (1974) 97-115. https://doi.org/10.1016/S0031-6989(74)80018-4

M. Imran. Ethionamide and prothionamide based coumarinyl-thiazole derivatives: Synthesis, antitubercular activity, toxicity investigations and molecular docking studies, Pharmaceutical Chemistry Journal 56 (2022) 1215-1225. https://doi.org/10.1007/ s11094-022-02782-0

J. Zhang, J. Dai, X. Lan, Y. Zhao, F. Yang, H. Zhang, S. Tang, G. Liang, X. Wang, Q. Tang. Synthesis, bioevaluation and molecular dynamics of pyrrolo-pyridine benzamide derivatives as potential antitumor agents in vitro and in vivo, European Journal of Medicinal Chemistry 233 (2022) 114215. https://doi.org/10.1016/j.ejmech.2022.114215

R. M. Kassab, M. H. Ibrahim, A. Rushdi, S. J. Almehmadi, M. E. Zaki, S. A. Al-Hussain, Z. A. Muhammad, T. A. Farghaly. Comprehensive study for synthesis, antiviral activity, docking and ADME study for the new fluorinated hydrazonal and indeno[1,2- b]pyridine derivatives, J. Mol. Struct. 1305 (2024) 137752. https://doi.org/10.1016/ j.molstruc.2024.137752

B. Turovska, I. Goba, A. Lielpetere, V. Glezer. Electrochemistry of pyridine derivatives, Journal of Solid State Electrochemistry 27 (2023) 1717-1729. https://doi.org/10.1007/ s10008-023-05425-w

L. Jäntschi. Modelling of acids and bases revisited, Studia Universitatis Babes-Bolyai, Seria Chemia 67 (2022) 73-92. https://doi.org/10.24193/subbchem.2022.4.05

O. Ciocirlan, E.-M. Ungureanu, A.-A. Vasile (Corbei), A. Stefaniu. Properties assessment by quantum mechanical calculations for azulenes substituted with thiophen- or furan-vinyl-pyridine, Symmetry 14 (2022) 354. https://doi.org/10.3390/ sym14020354

M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova Science Publishers, Huntington, N.Y., 2001, p. 197-232. http://lccn.loc.gov/2001031282

L. Jäntschi. MDF - a new qsar/qspr molecular descriptors family, Leonardo Journal of Sciences 3 (2004) 68-85. http://ljs.academicdirect.org/A04/68_85.pdf

S. D. Bolboacă, L. Jäntschi. Predictivity approach for quantitative structure-property models. Application for blood-brain barrier permeation of diverse drug-like compounds, International Journal of Molecular Sciences 12 (2011) 4348-4364. https://doi.org/10.3390/ijms12074348

R. E. Sestras, , L. Jäntschi, S. D. Bolboacă. Quantum mechanics study on a series of steroids relating separation with structure, JPC - Journal of Planar Chromatography - Modern TLC 25 (2012) 528-533. https://doi.org/10.1556/JPC.25.2012.6.7

S. D. Bolboacă, L. Jäntschi. Nanoquantitative structure-property relationship modeling on C42 fullerene isomers, Journal of Chemistry 2016 (2016) 1791756. https://doi.org/10.1155/2016/1791756

L. Jäntschi, S. D. Bolboacă. Chapter 15: Families of molecular descriptors, in New Frontiers in Nanochemistry: Concepts, Theories, and Trends. Volume 1: Structural Nanochemistry, M. V. Putz, Ed., Apple Academic Press, Burlington, Canada, 2020, p. 143-169. https://doi.org/10.1201/9780429022937

D. M. Opris, , M. V. Diudea. Peptide property modeling by cluj indices, SAR and QSAR in Environmental Research 12 (2001) 159-179. https://doi.org/10.1080/10629360108035377

L. Jäntschi, S.-D. Bolboacă. Results from the use of molecular descriptors family on structure property/activity relationships, International Journal of Molecular Sciences 8 (2007) 189-203. https://doi.org/10.3390/i8030189

D. Janežič, L. Jäntschi, D. S. Bolboacă. Sugars and sweeteners: Structure, properties and in silico modeling, Current Medicinal Chemistry 27 (2020) 5-22. https://doi.org/10.2174/0929867325666180926144401

D. Bálint, L. Jäntschi. Comparison of molecular geometry optimization methods based on molecular descriptors, Mathematics 9 (2021) 2855. https://doi.org/10.3390/ math9222855

L. Jäntschi. Structure vs. Property: Models and Algorithms (Babeș-Bolyai University: Habilitation Thesis) (2012). http://lori.academicdirect.org/doctoral/advisor/HabilThesis_InShort.pdf

L. Jäntschi. General Chemistry (3rd ed.), AcademicDirect, Cluj-Napoca, Romania, 2013, pp. 436. http://ph.academicdirect.org/GCC_v3.pdf

L. Jäntschi. Eigenproblem basics and algorithms, Symmetry 15 (2023) 2046. https://doi.org/10.3390/sym15112046

E. Hückel. Quantentheoretische beiträge zum benzolproblem, Zeitschrift für Physik 70 (1931) 204-286. https://doi.org/10.1007/BF01339530

D.-M. Joița, L. Jäntschi. Extending the characteristic polynomial for characterization of C20 fullerene congeners, Mathematics 5 (2017) 84. http://doi.org/10.3390/ math5040084

S. D. Bolboacă, L. Jäntschi. How good can the characteristic polynomial be for correlations?, International Journal of Molecular Sciences 8 (2007) 335-345. https://doi.org/10.3390/i8040335

L. Jäntschi. Structure-property relationships for solubility of monosaccharides, Applied Water Science 9 (2019) 38. https://doi.org/10.1007/s13201-019-0912-1

T. A. Halgren. Merck molecular force field. II. MMFF94 van der waals and electrostatic parameters for intermolecular interactions, Journal of Computational Chemistry 17 (1996) 520-552. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W

S. E. Brownell, S. Freeman, M. P. Wenderoth, A. J. Crowe. Biocore guide: A tool for interpreting the core concepts of vision and change for biology majors, CBE-Life Sciences Education 13 (2014) 200-211. https://doi.org/10.1187/cbe.13-12-0233

A. C. Brown, T. R. Fraser. V.—On the connection between chemical constitution and phys- iological action. Part. i.-On the physiological action of the salts of the ammonium bases, derived from strychnia, brucia, thebaia, codeia, morphia, and nicotia, Transactions of the Royal Society of Edinburgh 25 (1868) 151-203

R. S. DeFever, H. Bruce, G. Bhattacharyya. Mental rolodexing: Senior chemistry majors’ understanding of chemical and physical properties, Journal of Chemical Education 92 (2015) 415-426. https://doi.org/10.1021/ed500360g

L. Jäntschi. Detecting extreme values with order statistics in samples from continuous distributions, Mathematics 8 (2020) 216. https://doi.org/10.3390/math8020216

L. Jäntschi. A test detecting the outliers for continuous distributions based on the cumulative distribution function of the data being tested, Symmetry 11 (2019) 835. https://doi.org/10.3390/sym11060835

L. L. Pruteanu, L. Jäntschi, M. L. Unguresan, S. D. Bolboacă. Models of monovalent ions dissolved in water, Studia Universitatis Babes-Bolyai, Seria Chemia 61 (2016) 151-163. https://chem.ubbcluj.ro/˜studiachemia/issues/chemia2016_1/15Pruteanu_etal_151_162.pdf

A. Cherkasov, E. N. Muratov, D. Fourches, A. Varnek, I. I. Baskin, M. Cronin, J. Dear- den, P. Gramatica, Y. C. Martin, R. Todeschini, V. Consonni, V. E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, A. Tropsha. Qsar modeling: Where have you been? Where are you going to?, Journal of Medicinal Chemistry 57 (2014) 4977-5010. https://doi.org/10.1021/jm4004285

J. Verma, V. M. Khedkar, E. C. Coutinho. 3d-qsar in drug design - a review, Current Topics in Medicinal Chemistry 10 (2010) 95-115. https://doi.org/10.2174/156802610790232260

J. Huuskonen. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology, Journal of Chemical Information and Computer Sciences 40 (2000) 773-777. https://doi.org/10.1021/ci9901338

T. A. Halgren. Merck molecular force field. i. Basis, form, scope, parame- terization, and performance of MMFF94, Journal of Computational Chemistry 17 (1996) 490-519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

L. Jäntschi. Triple crossed 3 C26 cyclic cumulene catenane, Fullerenes, Nanotubes and Carbon Nanostructures 32 (2024) 1-15. https://doi.org/10.1080/1536383X.2024.2354721

S. N. Roese, J. D. Heintz, C. B. Uzat, A. J. Schmidt, G. V. Margulis, S. J. Sabatino, A. S. Paluch. Assessment of the sm12, sm8, and smd solvation models for predicting limiting activity coefficients at 298.15 K, Processes 8 (2020) 623. https://doi.org/10.3390/ pr8050623

R. A. Fisher. On an absolute criterion for fitting frequency curves, Messenger of Mathematics 41 (1912) 155-160. https://hdl.handle.net/2440/15165

D. G. Jenkins, P. F. Quintana-Ascencio. A solution to minimum sample size for regressions, PloS One 15 (2020) e0229345. https://doi.org/10.1371/journal.pone. 0229345

K. Kelley, S. E. Maxwell. Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant, Psychological Methods 8 (2003) 305-321. https://doi.org/10.1037/1082-989X.8.3.305

L. Jäntschi. Distribution fitting 1. Parameters estimation under assumption of agreement between observation and model, Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture 66 (2009) 684-690. https://doi.org/10.48550/arXiv.0907.2829

J. H. Steiger. Tests for comparing elements of a correlation matrix, Psychological Bulletin 87 (1980) 245-251. https://doi.org/10.1037/0033-2909.87.2.245

L. Jäntschi. The eigenproblem translated for alignment of molecules, Symmetry 11 (2019) 1027. https://doi.org/10.3390/sym11081027

K. Pearson. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, The Philosophical Magazine series 5 50 (1900) 157-175. https://doi.org/10.1080/14786440009463897

W. S. Gosset. The probable error of a mean, Biometrika 6 (1908) 1-25. https://doi.org/10.1093/biomet/6.1.1

A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics 98 (1993) 5648-5652. http://doi.org/10.1063/1.464913

P. J. Stephens, F. J. Devlin, C. S. Ashvar, C. F. Chabalowski, M. J. Frisch. Theoretical calculation of vibrational circular dichroism spectra, Faraday Discussions 99 (1994) 103-119. http://doi.org/10.1039/FD9949900103

Y. Zhao, D. G. Truhlar. The M06 suite of density functionals for main group thermo-chemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts 120 (2008) 215-241. https://doi.org/10.1007/s00214-007-0310-x

A. V. Marenich, R. M. Olson, C. P. Kelly, C. J. Cramer, D. G. Truhlar. Self-consistent reaction field model for aqueous and nonaqueous solutions based on accurate polarized partial charges, Journal of Chemical Theory and Computation 3 (2007) 2011-2033. https://doi.org/10.1021/ ct7001418

R. A. Fisher. On a distribution yielding the error functions of several well known statistics, Proceedings of the International Mathematical Congress. Toronto 2 (1924) 805-813. https://hdl.handle.net/2440/ 15183

Downloads

Published

26-07-2024

How to Cite

Ungureanu, E.-M., Ștefaniu, A., Isopescu, R., Mușina, C.-E., Bujduveanu, M.-R., & Jäntschi, L. (2024). Extended characteristic polynomial estimating the electrochemical behaviour of some 4-(azulen-1-yl)-2,6-divinylpyridine derivatives: Original scientific paper. Journal of Electrochemical Science and Engineering, 2374. https://doi.org/10.5599/jese.2374

Issue

Section

RSE SEE 9 Special Issue

Most read articles by the same author(s)