Supercapacitive performance of self-assembled thin film of liquid catocene/basal plane pyrolytic graphite electrode

Original scientific paper

Authors

  • Sajjad Damiri Department of Applied Chemistry, Maleke-ashtar University of Technology, Shahin-shahr, Esfahan, I. R. Iran https://orcid.org/0000-0003-4673-9241
  • Zahra Samiei Department of Applied Chemistry, Maleke-ashtar University of Technology, Shahin-shahr, Esfahan, I. R. Iran https://orcid.org/0000-0002-0307-2347
  • Hamid Reza Pouretedal Department of Applied Chemistry, Maleke-ashtar University of Technology, Shahin-shahr, Esfahan, I. R. Iran https://orcid.org/0000-0003-0017-2972

DOI:

https://doi.org/10.5599/jese.2330

Keywords:

Supercapacitor, thin film, ferrocene, liquid redox, self-assembly
Graphical Abstract

Abstract

Reasonable design of electrode material with low cost, lightweight, and excellent electrochemical properties is of great significance for future large-scale energy storage applications. Herein, we report the electrochemical and supercapacitive behaviour of the liquid redox of catocene, 2,2’-bis(ethyl-ferroceneyl) propane, self-assembled on a basal plane pyrolitic graphite electrode in comparison to the solid ferrocene thin film in aqueous sodium sulfate electrolyte. The modified electrode surfaces were evaluated to assess the iron content and the formation of thin film using scanning electron microscopy, laser-induced breakdown spectroscopy, and attenuated total reflectance method. Also, the supercapacitive performances of the related modified electrodes were assessed and compared using cyclic voltammetry and galvanostatic charge-discharge in a three-electrode system and an asymmetric two-electrode supercapacitor system. Electro­chemical results showed that the electrode processes are diffusion-controlled with battery-like behaviour, and the liquid catocene exhibits more effective interaction with the graphite surface in comparison to solid ferrocene. The catocene surface coverage on graphite is nearly 50-75 % higher than ferrocene, leading to improved interaction and charge transfer resistance, observed in electrochemical impedance spectroscopy studies. In galvanostatic charge-discharge evaluations, the supercapacitor based on catocene modified electrode shows a specific capacitance of 141.2 F g-1 at a current density of 1.0 A g-1, with a specific energy density of 56.7 Wh kg-1 at a power density of 2.9 kW kg-1.

Downloads

Download data is not yet available.

References

S. Sharma, P. Chand, Supercapacitor and electrochemical techniques, Results in Chemistry 5 (2023) 100885. https://doi.org/10.1016/J.RECHEM.2023.100885

J. Qiu, H. Zhao, Y. Lei, Emerging smart design of electrodes for micro-supercapacitors, SmartMat 3 (2022) 447-473. https://doi.org/10.1002/SMM2.1094

N. S. Shaikh, S. B. Ubale, V. J. Mane, J. S. Shaikh, V. C. Lokhande, S. Praserthdam, C. D. Lokhande, P. Kanjanaboos, Novel electrodes for supercapacitor: Conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene, Journal of Alloys and Compounds 893 (2022) 161998. https://doi.org/10.1016/J.JALLCOM.2021.161998

S. S. Shah, M. A. Aziz, W. Mahfoz, M. Akhtaruzzaman, Types of Supercapacitors, in: Biomass-Based Supercapacitors Design, Fabrication and Sustainability, John Wiley & Sons, Ltd, 2023, pp. 93-104. https://doi.org/10.1002/9781119866435.CH6

S. S. Rajaputra, N. Pennada, A. Yerramilli, N. M. Kummara, Graphene based sulfonated polyvinyl alcohol hydrogel nanocomposite for flexible supercapacitors, Journal of Electrochemical Science and Engineering 11 (2021) 197-207. https://doi.org/10.5599/JESE.1031

V. N. K. S. K. Nersu, B. R. Annepu, S. S. B. Patcha, S. S. Rajaputra, Rice husk char as a potential electrode material for supercapacitors, Journal of Electrochemical Science and Engineering, 12 (2022) 451-462. https://doi.org/10.5599/JESE.1310

M. S. Khan, P. Shakya, N. Bhardwaj, D. Jhankal, A. K. Sharma, M. K. Banerjee, K. Sachdev, Chemical vapor deposited graphene-based quasi-solid-state ultrathin and flexible sodium-ion supercapacitor, Journal of Electrochemical Science and Engineering 12 (2022) 799-813. https://doi.org/10.5599/JESE.1411

S. Tomar, V. K. Singh, Cobalt and copper-based metal-organic frameworks synthesis and their supercapacitor application, Journal of Electrochemical Science and Engineering 14 (2024) 163175. https://doi.org/10.5599/JESE.2096

R. Maheswaran, B. P. Shanmugavel, A Critical Review of the Role of Carbon Nanotubes in the Progress of Next-Generation Electronic Applications, Journal of Electronic Materials 51 (2022) 2786-2800. https://doi.org/10.1007/S11664-022-09516-8/FIGURES/12

S. Damiri, H. Y. Varzaneh, H. R. Ebrahimi, PEG-assisted electrochemical growth of lead oxide nanodendrites with strongly enhanced charge storage capacity, Materials Letters 65 (2011) 2598-2600. https://doi.org/10.1016/J.MATLET.2011.06.024

M. Yu, X. Feng, Thin-Film Electrode-Based Supercapacitors, Joule 3 (2019) 338-360. https://doi.org/10.1016/J.JOULE.2018.12.012

B. Asbani, G. Buvat, J. Freixas, M. Huvé, D. Troadec, P. Roussel, T. Brousse, C. Lethien, Ultra-high areal capacitance and high rate capability RuO2 thin film electrodes for 3D micro-supercapacitors, Energy Storage Materials 42 (2021) 259-267. https://doi.org/10.1016/J.ENSM.2021.07.038

S. Tanwar, A. Arya, A. Gaur, A. L. Sharma, Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review, Journal of Physics: Condensed Matter, 33 (2021) 303002. https://doi.org/10.1088/1361-648X/ABFB3C

S. Panda, K. Deshmukh, S. K. Khadheer Pasha, J. Theerthagiri, S. Manickam, M. Y. Choi, MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives, Coordination Chemistry Reviews 462 (2022) 214518. https://doi.org/10.1016/J.CCR.2022.214518

J. Wu, J. Peng, Z. Yu, Y. Zhou, Y. Guo, Z. Li, Y. Lin, K. Ruan, C. Wu, Y. Xie, Acid-Assisted Exfoliation toward Metallic Sub-nanopore TaS2 Monolayer with High Volumetric Capacitance, Journal of the American Chemical Society 140 (2018) 493-498. https://doi.org/10.1021/JACS.7B11915

H. Li, Y. Liu, S. Lin, H. Li, Z. Wu, L. Zhu, C. Li, X. Wang, X. Zhu, Y. Sun, Laser crystallized sandwich-like MXene/Fe3O4/MXene thin film electrodes for flexible supercapacitors, Journal of Power Sources 497 (2021) 229882. https://doi.org/10.1016/J.JPOWSOUR.2021.229882

B. Chen, L. Xu, Z. Xie, W. Y. Wong, Supercapacitor electrodes based on metal-organic compounds from the first transition metal series, EcoMat 3 (2021) e12106. https://doi.org/10.1002/EOM2.12106

X. Chen, K. Chen, H. Wang, D. Xue, Composition Design Upon Iron Element Toward Supercapacitor Electrode Materials, Materials Focus 4 (2015) 78-80. https://doi.org/10.1166/MAT.2015.1213

M. L. Hu, M. Abbasi-Azad, B. Habibi, F. Rouhani, H. Moghanni-Bavil-Olyaei, K. G. Liu, A. Morsali, Electrochemical Applications of Ferrocene-Based Coordination Polymers, ChemPlusChem 85 (2020) 2397-2418. https://doi.org/10.1002/CPLU.202000584

G. A. M. Ali, E. Megiel, P. Cieciórski, M. R. Thalji, J. Romański, H. Algarni, K. F. Chong, Ferrocene functionalized multi-walled carbon nanotubes as supercapacitor electrodes, Journal of Molecular Liquids 318 (2020) 114064. https://doi.org/10.1016/J.MOLLIQ.2020.114064

R. Teimuri-Mofrad, R. Hadi, H. Abbasi, Synthesis and characterization of ferrocene-functionalized reduced graphene oxide nanocomposite as a supercapacitor electrode material, Journal of Organometallic Chemistry 880 (2019) 355-362. https://doi.org/10.1016/J.JORGANCHEM.2018.11.033

P. Saha, V. K. Yadav, V. Gurunarayanan, R. Ramapanicker, J. K. Singh, T. G. Gopakumar, Revealing the Limits of Intermolecular Interactions: Molecular Rings of Ferrocene Derivatives on Graphite Surface, Journal of Physical Chemistry Letters 11 (2020) 297-302. https://doi.org/10.1021/acs.jpclett.9b03357

N. Kurapati, P. Pathirathna, C. J. Ziegler, S. Amemiya, Adsorption and Electron-Transfer Mechanisms of Ferrocene Carboxylates and Sulfonates at Highly Oriented Pyrolytic Graphite, ChemElectroChem 6 (2019) 5651-5660. https://doi.org/10.1002/CELC.201901664

S. Damiri, H. R. Pouretedal, M. Mahmoudi, Sensitive Electrocatalytic Assay of Cyclotetramethylene Tetranitramine (HMX) Explosive on Carbon Nanotube/Ag Nanocomposite Electrode, Iranian Journal of Catalysis 12 (2022) 69-76. https://doi.org/10.30495/ijc.2022.689576

M. Sa’at, M. Yarmohammadi, M. Zamani Pedram, M. Shahidzadeh, M. S. Amini-Fazl, Evaluation of the catocene/graphene oxide nanocomposite catalytic activity on ammonium perchlorate thermal decomposition, International Journal of Chemical Kinetics 51 (2019) 337-345. https://doi.org/10.1002/KIN.21257

A. Noori, M. F. El-Kady, M. S. Rahmanifar, R. B. Kaner, M. F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond, Chemical Society Reviews 48 (2019) 1272-1341. https://doi.org/10.1039/C8CS00581H

K. Liu, Z. Hu, R. Xue, J. Zhang, J. Zhu, Electropolymerization of high stable poly(3,4-ethylenedioxythiophene) in ionic liquids and its potential applications in electrochemical capacitor, Journal of Power Sources 179 (2008) 858-862. https://doi.org/10.1016/J.JPOWSOUR.2008.01.024

M. Ghosh, K. K. Swain, P. S. Remya Devi, T. A. Chavan, A. K. Singh, M. K. Tiwari, R. Verma, Determination of impurities in graphite using synchrotron radiation based X-ray fluorescence spectrometry, Applied Radiation and Isotopes 128 (2017) 210-215. https://doi.org/10.1016/J.APRADISO.2017.07.025

N. Idris, K. Lahna, Fadhli, M. Ramli, Study on Emission Spectral Lines of Iron, Fe in Laser-Induced Breakdown Spectroscopy (LIBS) on Soil Samples, Journal of Physics: Conference Series 846 (2017) 012020. https://doi.org/10.1088/1742-6596/846/1/012020

Y. Ralchenko, A. Kramida, Development of NIST Atomic Databases and Online Tools, Atoms 8 (2020) 56. https://doi.org/10.3390/ATOMS8030056

J. Shimei, W. Yue, Vibrational spectra of an open ferrocene and a half-open ferrocene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 55 (1999) 1025-1033. https://doi.org/10.1016/S1386-1425(98)00246-7

N. G. Tsierkezos, Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15, Journal of Solution Chemistry 36 (2007) 289-302. https://doi.org/10.1007/s10953-006-9119-9

L. Xiaoju, S. Qi, F. Haitao, Z. Chi, M. Xiaoyan, L. Xiaoju, S. Qi, F. Haitao, Z. Chi, M. Xiaoyan, Theoretical and experimental study on synthesis of high-content catocene. Journal of Beijing University of Aeronautics and Astronautics 47 (2021) 2514-2520. https://doi.org/10.13700/J.BH.1001-5965.2020.0497

A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, John Wiley & Sons, 2001.

Y. Gogotsi, R. M. Penner, Energy Storage in Nanomaterials - Capacitive, Pseudocapacitive, or Battery-like? ACS Nano, 12 (2018) 2081-2083. https://doi.org/10.1021/acsnano.8b01914

M. R. Thalji, G. A. M. Ali, P. Liu, Y. L. Zhong, K. F. Chong, W18O49 nanowires-graphene nanocomposite for asymmetric supercapacitors employing AlCl3 aqueous electrolyte. Chemical Engineering Journal 409 (2021) 128216. https://doi.org/10.1016/J.CEJ.2020.128216

W. Pholauyphon, P. Charoen-amornkitt, T. Suzuki, S. Tsushima, Perspectives on accurately analyzing cyclic voltammograms for surface- and diffusion-controlled contributions, Electrochemistry Communications 159 (2024) 107654. https://doi.org/10.1016/J.ELECOM.2023.107654

S. Damiri, H. R. Pouretedal, A. Heidari, Fabrication of a nanostructured TiO2/carbon nanotube composite electrode for voltammetric and impedimetric determination of NTO explosive in the water and soil samples, International Journal of Environmental Analytical Chemistry 96 (2016) 1059-1073. https://doi.org/10.1080/03067319.2016.1232722

K. M. Košiček, K. Kvastek, V. Horvat-Radošević, Different charge storage mechanisms at some carbon electrodes in redox active electrolyte revealed by electrochemical impedance spectroscopy, Electrochimica Acta 195 (2016) 77-84. https://doi.org/10.1016/J.ELECTACTA.2016.02.140

C. P. Zimmermann, G. M. Kranz, J. P. Eckert, L. Fadani, M. Zanetti, J. M. M. de Mello, P. R. Innocente, G. L. Colpani, M. A. Fiori, C. H. Scuracchio, Ionic Polymer-Metal Composite Coated with Polyaniline Film by Electrodeposition: A Promising IPMC/PANI Junction for Applications in Robotics and Bioengineering, Materials Research 26 (2023) e20220609. https://doi.org/10.1590/1980-5373-MR-2022-0609

J. Jang, H. U. Cho, S. Hwang, Y. Kwak, H. Kwon, M. L. Heien, K. E. Bennet, Y. Oh, H. Shin, K. H. Lee, D. P. Jang, Understanding the different effects of fouling mechanisms on working and reference electrodes in fast-scan cyclic voltammetry for neurotransmitter detection, Analyst 149 (2024) 3008-3016. https://doi.org/10.1039/D3AN02205F

B. Z. Jiang, T. P. Wang, Oxidation of Catocene in AP/Catocene Mixture at Low Temperature, Propellants, Explosives, Pyrotechnics, 44 (2019) 513-518. https://doi.org/10.1002/PREP.201800168

S. K. Patil, M. M. Vadiyar, S. C. Bhise, S. A. Patil, D. V. Awale, U. V. Ghorpade, J. H. Kim, A. V. Ghule, S. S. Kolekar, Hydroxy functionalized ionic liquids as promising electrolytes for supercapacitor study of α-Fe2O3 thin films, Journal of Materials Science: Materials in Electronics 28 (2017) 11738-11748. https://doi.org/10.1007/S10854-017-6978-3

K. Y. Yasoda, S. Kumar, M. S. Kumar, K. Ghosh, S. K. Batabyal, Fabrication of MnS/GO/PANI nanocomposites on a highly conducting graphite electrode for supercapacitor application, Materials Today Chemistry 19 (2021) 100394. https://doi.org/10.1016/J.MTCHEM.2020.100394

E. Karaca, D. Gökcen, N. Ö. Pekmez, K. Pekmez, Galvanostatic synthesis of nanostructured Ag-Ag2O dispersed PPy composite on graphite electrode for supercapacitor applications. International Journal of Energy Research 44 (2020) 158-170. https://doi.org/10.1002/ER.4881

Y. Albarqouni, G. A. M. Ali, S. P. Lee, A. R. Mohd-Hairul, H. Algarni, K. F. Chong, Dual-functional single stranded deoxyribonucleic acid for graphene oxide reduction and charge storage enhancement, Electrochimica Acta 399 (2021) 139366. https://doi.org/10.1016/J.ELECTACTA.2021.139366

V. Prabu, K. Geetha, R. Sekar, M. Ulaganathan, Binder-Free Electro-Deposited MnO2@3D Carbon Felt Network: A Positive Electrode for 2V Aqueous Supercapacitor, Energy Technolog, 11 (2023) 2201345. https://doi.org/10.1002/ENTE.202201345

S. Azizi, M. B. Askari, S. M. Rozati, M. Masoumnezhad, Nickel ferrite coated on carbon felt for asymmetric supercapacitor, Chemical Physics Impact 8 (2024) 100543. https://doi.org/10.1016/J.CHPHI.2024.100543

Published

23-07-2024

How to Cite

Damiri, S., Samiei, Z., & Pouretedal , H. R. (2024). Supercapacitive performance of self-assembled thin film of liquid catocene/basal plane pyrolytic graphite electrode: Original scientific paper. Journal of Electrochemical Science and Engineering, 14(3), 353–368. https://doi.org/10.5599/jese.2330

Issue

Section

Batteries and supercapcitors