Optimal design of LiMn2O4 for high-rate applications by means of citric acid aided route and microwave heating

Original scientific paper

Authors

  • Yurii Shmatok Joint Department of Electrochemical Energy Systems of the National Academy of Science of Ukraine, 38A Vernadsky Ave., 03680 Kyiv, Ukraine https://orcid.org/0000-0001-7477-9297
  • Hanna Potapenko Joint Department of Electrochemical Energy Systems of the National Academy of Science of Ukraine, 38A Vernadsky Ave., 03680 Kyiv, Ukraine and Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China https://orcid.org/0000-0002-1071-0183
  • Sviatoslav Kirillov Joint Department of Electrochemical Energy Systems of the National Academy of Science of Ukraine, 38A Vernadsky Ave., 03680 Kyiv, Ukraine https://orcid.org/0000-0001-5592-9106

DOI:

https://doi.org/10.5599/jese.2253

Keywords:

Microwave processing, batteries, lithium manganese spinel, high-rate properties
Graphical Abstract

Abstract

Due to the shortening of the duration of the process and the possibility of obtaining crystals of smaller and uniform size, microwave heating is considered an effective and promising tool for the synthesis of LiMn2O4, a valuable cathode material for lithium-ion batteries. However, the electrochemical characteristics of LiMn2O4 obtained with its help are almost completely absent and do not allow for drawing a sound conclusion regarding the advantages and drawbacks of microwave processing. Here, we describe the microwave-assisted citric acid aided synthesis, characterization and electrochemical performance of LiMn2O4. The disclosure of detailed working protocols enabling one to manufacture samples tolerant to extremely high currents is the main novelty of this paper. Specifically, our material sustains current loads up to 40  C (5920 mA g-1) and completely recovers after cycling in harsh conditions.

Downloads

Download data is not yet available.

References

M. M. Thackeray, E. Lee, B. Shi, J.R. Croy, Review-from LiMn2O4 to partially-disordered Li2MnNiO4: the evolution of lithiated-spinel cathodes for Li-ion batteries, Journal of The Electrochemical Society 169 (2022) 020535. https://doi.org/10.1149/1945-7111/ac50dd.

G. E. Blomgren, The development and future of lithium ion batteries, Journal of The Electrochemical Society 164 (2017) A5019-A5025. https://doi.org/10.1149/2.0251701jes

A. V. Potapenko, S. A. Kirillov, Lithium manganese spinel materials for high-rate electrochemical applications, Journal of Energy Chemistry 23 (2014) 543-558. https://doi.org/10.1016/S2095-4956(14)60184-4

A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, W. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nature Materials 4 (2005) 366-377. https://doi.org/10.1038/nmat1368

Z. Zhang, B. McNall, A. B. Kanagaraj, J. R. Park, J. E. Ryu, D. Choi, Electrochemical charac-terization of LiMn2O4 nanowires fabricated by sol-gel for lithium-ion rechargeable batteries, Materials Letters 273 (2020) 127923. https://doi.org/10.1016/j.matlet.2020.127923

A. M. Hashem, A. E. Abdel-Ghany, H. M. Abuzeid, R. S. El-Tawil, S. Indris, H. Ehrenberg, A. Mauger, C. M Julien, EDTA as chelating agent for sol-gel synthesis of spinel LiMn2O4 cathode material for lithium batteries, Journal of Alloys and Compounds 737 (2018) 758-766. https://doi.org/10.1016/j.jallcom.2017.12.153

R. Kun, P. Schlee, E. Pal, M. Busse, T. Gesing, Role of the precursor chemistry on the phase composition and electrochemical performance of thin-film LiMn2O4 Li-ion battery cathodes prepared by spray pyrolysis. Journal of Alloys and Compounds 726 (2017) 664-674. https://doi.org/10.1016/j.jallcom.2017.08.039

H. Gao, Q. Yan, P. Xu, H. Liu, M. Li, P. Liu, J. Luo, Z. Chen, Efficient direct recycling of degraded LiMn2O4 cathodes by one-step hydrothermal relithiation. ACS Applied Materials & Interfaces 12 (2020) 51546-51554. https://doi.org/10.1021/acsami.0c15704

W. B. Hua, S. N. Wang, X. D. Guo, S. L. Chou, K. Yin, B. H. Zhong, S. X. Dou, Vacuum induced self-assembling nanoporous LiMn2O4 for lithium ion batteries with superior high rate capa¬bi-lity, Electrochimica Acta 186 (2015) 253-261. https://doi.org/10.1016/j.electacta.2015.10.093.

S. Chen, Z. Chen, C. Cao, Mesoporous spinel LiMn2O4 cathode material by a soft-templating route, Electrochimica Acta 199 (2016) 51-58. https://doi.org/10.1016/j.electacta.2016.03.135.

S. A. Kirillov, Electrode materials and electrolytes for high-rate electrochemical energy systems: a review, Theoretical and Experimental Chemistry 55 (2019) 73-95. https://doi.org/10.1007/s11237-019-09598-2.

A. H. Marincaş, F. Goga, S. A. Dorneanu, P. Ilea, Review on synthesis methods to obtain LiMn2O4-based cathode materials for Li-ion batteries, Journal of Solid State Electrochemistry 24 (2020) 473-497. https://doi.org/10.1007/s10008-019-04467-3

C. Bluthardt, C. Fink, K. Flick, A. Hagemeyer, M. Schlichter, A. Volpe Jr, Aqueous synthesis of high surface area metal oxides, Catalysis Today 137 (2008) 132-143. https://doi.org/10.1016/j.cattod.2008.04.045

C. Fink, A. Hagemeyer, Z. Hogan, A. Volpe Jr., J. Yoder, High surface area cerium oxide, Current Catalysis 5 (2016) 182-202. https://doi.org/10.2174/2211544705666160509161559

I. A. Farbun, I. V. Romanova, S. A. Kirillov. Optimal design of powdered nanosized oxides of high surface area and porosity using a citric acid aided route, with special reference to ZnO, Journal of Sol-Gel Science and Technology 68 (2013) 411-422. https://doi.org/10.1007/s10971-013-3024-7

I. V. Romanova, S. A. Kirillov, Preparation of Cu, Ni and Co oxides by a citric acid-aided route, Journal of Thermal Analysis and Calorimetry 132 (2018) 503-512. https://doi.org/10.1007/s10973-017-6880-5

A. V. Potapenko, S. I. Chernukhin, S. A. Kirillov, A new method of pretreatment of lithium manganese spinels and high-rate electrochemical performance of Li[Li0.033Mn1.967]O4. Materials for Renewable and Sustainable Energy 3 (2014) 40. https://doi.org/10.1007/s40243-014-0040-7

A. V. Potapenko, S. I. Chernukhin, I. V. Romanova, K. Sh. Rabadanov, M. M. Gafurov, S. A. Kirillov, Citric acid aided synthesis, characterization, and high-rate electrochemical performance of LiNi0.5Mn1.5O4, Electrochimica Acta 134 (2014) 442-449. https://doi.org/10.1016/j.electacta.2014.04.083

V. V. Kosilov, A. V. Potapenko, S. A. Kirillov, Effect of overdischarge (overlithiation) on electrochemical properties of LiMn2O4 samples of different origin, Journal of Solid State Electrochemistry 21 (2017) 3269-3279. https://doi.org/10.1007/s10008-017-3671-7

A. V. Potapenko, S. A. Kirillov, Enhancing high-rate electrochemical properties of LiMn2O4 in a LiMn2O4/LiNi0.5Mn1.5O4 core/shell composite, Electrochimica Acta 258 (2017) 9-16. https://doi.org/10.1016/j.electacta.2017.10.108

S. A. Kirillov, I. V. Romanova, T. V. Lisnycha, A. V. Potapenko, High-rate electrochemical performance of Li4Ti5O12 obtained from TiCl4 by means of a citric acid aided route, Electrochimica Acta 286 (2018) 163-171. https://doi.org/10.1016/j.electacta.2018.08.034

A. V. Potapenko, M. Wu, S. A. Kirillov, Remarkable electrochemical performance of 0.5Li2 MnO3·0.5LiNi0.5Mn0.3Co0.2O2 synthesized by means of a citric acid-aided route, Journal of Solid State Electrochemistry 23 (2019) 3383-3389. https://doi.org/10.1007/s10008-019-04442-y

S. A. Kirillov, A. V. Potapenko, A. V. Potapenko, Effect of overdischarge (overlithiation) on electrochemical properties of LiNi0.5Mn1.5O4 samples of different origin, Journal of Solid State Electrochemistry 24 (2020) 1113-1121. https://doi.org/10.1007/s10008-020-04601-6.

S. Balaji, D. Mutharasu, N. S. Subramanian, K. Ramanathan, A review on microwave synthesis of electrode materials for lithium-ion batteries, Ionics 15 (2009) 765-777. https://doi.org/10.1007/s11581-009-0350-4.

F. K. Butt, A. S. Bandarenka, Microwave-assisted synthesis of functional electrode materials for energy applications, Journal of Solid State Electrochemistry 20 (2016) 2915-2928. https://doi.org/10.1007/s10008-016-3315-3

H. Yan, X. Huang, L. Chen, Microwave synthesis of LiMn2O4 cathode material, Journal of Power Sources 81-82 (1999) 647-650. https://doi.org/10.1016/S0378-7753(99)00112-3

P. S. Whitfield, I. J. Davidson, Microwave synthesis of Li1.025Mn1.975O4 and Li1+xMn2-xO4-yFy (x= 0.05, 0.15; y = 0.05, 0.1), Journal of The Electrochemical Society 147 (2000) 4476-4484. https://doi.org/10.1149/1.1394089

M. H. Bhat, B. P. Chakravarthy, P. A. Ramakrishnan, A. Levasseur, Microwave synthesis of electrode materials for lithium batteries, Bulletin of Materials Science 23 (2000) 461-466. https://doi.org/10.1007/BF02903884

H. Hao, H.-X. Liu, S.-X. Ouyang, Microwave synthesis of cathode material LixMn2O4 for lithium-ion battery, Journal of Wuhan University of Technology-Material Science 17 (2002) 36-38. https://doi.org/10.1007/BF02838413

M. Nakayama, K. Watanabe, H. Ikuta, Y. Uchimoto, M. Wakihara, Grain size control of LiMn2O4 cathode material using microwave synthesis method, Solid State Ionics 164 (2003) 35-42. https://doi.org/10.1016/j.ssi.2003.08.048

S. Kobayashi, T. Usui, H. Ikuta, Y. Uchimoto, M. Wakihara, Preparation of cathode active materials for lithium ion secondary batteries utilizing microwave irradiation: Part II. Electronic structure of lithium manganese oxide, Journal of Materials Research 19 (2004) 2421-2427. https://doi.org/10.1557/JMR.2004.0313

Y.-P. Fu, C.-H. Lin, Y.-H. Su, J.-H. Jean, S.-H. Wu, Electrochemical properties of LiMn2O4 synthesized by the microwave-induced combustion method, Ceramics International 30 (2004) 1953-1959. https://doi.org/10.1016/j.ceramint.2003.12.183

Y.-P. Fu, Y.-H. Su, C.-H. Lin, S.-H. Wu, Comparison of the microwave-induced combustion and solid-state reaction for the synthesis of LiMn2O4 powder and their electrochemical properties, Ceramics International 35 (2009) 3463-3468. https://doi.org/10.1016/j.ceramint.2009.06.027

B.-L. He, W.-J. Zhou, S.-J. Bao, Y.-Y. Liang, H.-L. Li, Preparation and electrochemical properties of LiMn2O4 by the microwave-assisted rheological phase method, Electrochimica Acta 52 (2007) 3286-3293. https://doi.org/10.1016/j.electacta.2006.10.002

S. Balaji, S. Shanmugan, D. Mutharasu, K. Ramanathan, Structural, morphological and electrochemical characterization of electron beam deposited Li1+xMn2O4 (x = 0, 0.05) thin films, Materials Science-Poland 28 (2010) 583-593.

D. Huo, Nanostructured morphology of spinel LiMn2O4 oxide under microwave heating, Advanced Materials Research 936 (2014) 452-458. https://doi.org/10.4028/www.scientific.net/AMR.936.452

J. P. Silva, S. R. Biaggio, N. Bocchi, R. C. Rocha-Filho, Practical microwave-assisted solid-state synthesis of the spinel LiMn2O4, Solid State Ionics 268 (2014) 42-47. https://doi.org/10.1016/j.ssi.2014.09.025

H. Zhang, Y. Xu, D. Liu, X. Zhang, C. Zhao, Structure and performance of dual-doped LiMn2O4 cathode materials prepared via microwave synthesis method, Electrochimica Acta 125 (2014) 225-231. https://doi.org/10.1016/j.electacta.2014.01.102

X. Liu, P. Liu, H. Wang, Preparation of spinel LiMn2O4 with porous microscopic morphology by simple coprecipitation-microwave synthesis method, Ionics 25 (2019) 5213-5220. https://doi.org/10.1007/s11581-019-03072-8

L. Tian, C. Su, Y. Wang, B. Wen, W. Bai, J. Guo, Electrochemical properties of spinel LiMn2O4 cathode material prepared by a microwave-induced solution flameless combustion method, Vacuum 164 (2019) 153-157. https://doi.org/10.1016/j.vacuum.2019.03.011

P. Ragupathya, H. N. Vasana, N. Munichandraiah, Microwave driven hydrothermal synthesis of LiMn2O4 nanoparticles as cathode material for Li-ion batteries, Materials Chemistry and Physics 124 (2010) 870-875. https://doi.org/10.1016/j.matchemphys.2010.08.014

M. Michalska, L. Lipińska, R. Diduszko, M. Mazurkiewicz, A. Małolepszy, L. Stobinski, K.J. Kurzydłowski, Chemical syntheses of nanocrystalline lithium manganese oxide spinel, Physica Status Solidi C 8 (2011) 2538-2541. https://doi.org/10.1002/pssc.201001195

B. N. Rao, P. Muralidharan, P. R. Kumar, M. Venkateswarlu, N. Satyanarayana, Fast and facile synthesis of LiMn2O4 nanorods for Li ion battery by microwave assisted hydrothermal and solid state reaction methods, International Journal of Electrochemical Science 9 (2014) 1207-1220.

H. Liu, C. Hu, X. Zhu, H. Hao, J. Luo, J. Zhou, S. Ouyang, Solid chemical reaction in microwave and millimeter-wave fields for the syntheses of LiMn2O4 compound, Materials Chemistry and Physics 88 (2004) 290-294. https://doi.org/10.1016/j.matchemphys.2004.06.037

S.-J. Bao, Y.-Y. Liang, H.-L. Li, Synthesis and electrochemical properties of LiMn2O4 by microwave-assisted sol-gel method, Materials Letters 59 (2005) 3761-3765. https://doi.org/10.1016/j.matlet.2005.07.012

R. Chen, B. Wen, C. Su, W. Bai, J. Guo, Significant improvement of LiMn2O4 cathode capacity by introducing trace Ni during rapid microwave-induced solution combustion, Electrochemistry 88 (2020) 532-539. https://doi.org/10.5796/electrochemistry.20-00083

N. I. Globa, Yu. V. Shmatok, V. D. Prisyazhnyi, Structural and electrochemical characteristics of LixMn2O4 spinel synthesized using a microwave-assisted method, Surface Engineering and Applied Electrochemistry 49 (2013) 488-492. https://doi.org/10.3103/S1068375513060094

N. I. Globa, Y. V. Shmatok, V. D. Prisyazhnyi, Comparison of the characteristics of LixMn2O4 synthesized by microwave and solid-state methods, ECS Transactions 48 (2014) 123-127. https://doi.org/10.1149/04801.0123ecst

J. Cao, S. Guo, R. Yan, C. Zhang, J. Guo, P. Zheng, Carbon-coated single-crystalline LiMn2O4 nanowires synthesized by high-temperature solid-state reaction with high capacity for Li-ion battery, Journal of Alloys and Compounds 741 (2018) 1-6. https://doi.org/10.1016/j.jallcom.2018.01.107

W. Zhang, Z. Zhao, Y. Lei, J. Xing, X. Cao, A facile and eco-friendly approach to synthesis of spinel LiMn2O4 with high electrochemical performance, International Journal of Electrochemical Science 15 (2020) 6188-6197. https://doi.org/10.20964/2020.07.77

Published

13-06-2024 — Updated on 13-06-2024

How to Cite

Shmatok, Y., Potapenko, H., & Kirillov, S. (2024). Optimal design of LiMn2O4 for high-rate applications by means of citric acid aided route and microwave heating: Original scientific paper. Journal of Electrochemical Science and Engineering, 14(3), 369–382. https://doi.org/10.5599/jese.2253

Issue

Section

Batteries and supercapcitors

Most read articles by the same author(s)