High-velocity oxy-fuel and high-velocity air fuel sprayed WC-Co-Cr coatings on solution-treated 21-4N steel for slurry and corrosion resistance

Original scientific paper

Authors

  • Rajanna Lingappa Department of Mechanical Engineering, JSS Science and Technology University, Mysuru, Karnataka 570006, India https://orcid.org/0000-0002-4726-4228
  • Tumakur Gangadhar Mamatha Department of Mechanical Engineering, JSS Science and Technology University, Mysuru, Karnataka 570006, India https://orcid.org/0000-0002-4726-4228
  • Momballi Shivappadevaru Prabhuswamy 2Department of Mechanical Engineering, JSS Academy of Technical Education, Noida, Uttar Pradesh 201301, India, https://orcid.org/0009-0005-1962-6585
  • Vikrant Singh Department of Mechanical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur-148106, Punjab, India https://orcid.org/0000-0003-4937-1032
  • Anuj Bansal Department of Mechanical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur-148106, Punjab, India https://orcid.org/0000-0001-9641-386X

DOI:

https://doi.org/10.5599/jese.2246

Keywords:

Slurry jet erosion test, Electrochemical corrosion test, surface modification
Graphical Abstract

Abstract

This study aims to fabricate WC-Co-Cr coatings on the solution-treated 21-4N steel utilizing high-velocity oxy-fuel (HVOF) and high-velocity air fuel (HVAF) techniques. The microstructure, hardness, surface quality, porosity, slurry erosion, and corrosion resistance of HVOF and HVAF coatings on solution-treated 21-4N steel were investigated and compared. The HVAF sprayed WC-Co-Cr coating exhibited dense structure, more hardness (1582 HV), greater fracture toughness (5.69 MPa m1/2), less decarburization, and lower porosity (0.97 %) as compared to HVOF sprayed coating. Further, slurry jet erosion tests and electrochemical corrosion tests provide a comprehensive evaluation of the coating’s performance under erosive and corrosive conditions. Eventually, the conclusive results of the study affirm the exceptional performance of the high-velocity air fuel sprayed WC-Co-Cr coating, demonstrating its superiority in both erosion and corrosion resistance compared to the high-velocity oxygen fuel sprayed coating.

Downloads

Download data is not yet available.

References

V. Singh, A. Kumar Singla, A. Bansal, Impact of HVOF sprayed Vanadium Carbide (VC) based novel coatings on slurry erosion behaviour of hydro-machinery SS316 steel, Tribology International 176 (2022) 107874. https://doi.org/10.1016/j.triboint.2022.107874.

V. Singh, A. Bansal, A. Kumar Singla, Response surface methodology (RSM) based analysis on slurry erosion behavior of laser textured and PTFE sprayed VC+ TiC coating deposited via HVOF, Materials Today Communications 36 (2023) 106843. https://doi.org/10.1016/j.mtcomm.2023.106843.

V. R. Kiragi, A. Patnaik, T. Singh, G. Fekete, Parametric optimization of erosive wear response of TiAlN-coated aluminum alloy using Taguchi method, Journal of Materials Engineering and Performance 28 (2019) 838-851. https://doi.org/10.1007/s11665-018-3816-6.

R. Kumar, K. Goyal, D. Bhandari, Slurry Erosion Behavior of Thermally Sprayed Nano YSZ Reinforced WC-10Co-4Cr Ceramic Nanocomposite Coatings, Tribology Transactions 66 (2023) 47-58. https://doi.org/10.1080/10402004.2022.2137446.

M. Magdy EI-Rayes, M. Sherif EI-Sherif, S. Abdo Abdo, Comparative Study into Microstructural and Mechanical Characterization of HVOF-WC-Based Coatings. Crystals12 (2022) 969. https://doi.org/10.3390/cryst12070969.

Y. Liu, W. Liu, Y. Ma, S. Meng, C. Liu, L. Long, S. Tang, A comparative study on wear and corrosion behaviour of HVOF-and HVAF-sprayed WC–10Co–4Cr coatings, Surface Engineering 33 (2007) 63-71. https://doi:10.1080/02670844.2016.1218194.

H. Singh Grewal, S. Bhandari, H. Singh, Parametric study of slurry-erosion of hydro turbine steels with and without detonation gun spray coatings using Taguchi technique, Metallurgical and Materials Transactions A 43 (2007) 3387-3401. https://doi.org/10.1007/s11661-012-1148-y.

D. Kumar Goyal, H. Singh, H. Kumar, V. Sahni, Slurry erosion behaviour of HVOF sprayed WC–10Co–4Cr and Al2O3+ 13TiO2 coatings on turbine steel, Wear 289 (2012) 46-57. https://doi.org/10.1016/j.wear.2012.04.016.

G. Singh, S. Kumar, S. Satbir Sehgal, Erosion tribo performance of HVOF deposited WC-10Co-4Cr and WC-10Co-4Cr+ 2% Y2O3 micron layers on pump impeller steel, Particulate Science and Technology 38 (2018) 34-44. https://doi.org/10.1080/02726351.2018.1501780.

G. Bolelli, L. M. Berger, T. Börner, H. Koivuluoto, L. Lusvarghi, C. Lyphout, P. Vuoristo, Tribology of HVOF-and HVAF-sprayed WC–10Co4Cr hard metal coatings: A comparative assessment, Surface and Coatings Technology 265 (2015) 125-144. https://doi:10.1016/j.surfcoat.2015.01.048.

V. Kumar, V. Singh, R. Verma, A. Bansal, G. Ghosh, Cavitation-corrosion analysis of HVOF-sprayed WC-Co-Cr-graphene nanoplatelets coatings with LST pre-treatment. International Journal of Refractory Metals and Hard Materials 120 (2024) 106610. https://doi.org/10.1016/j.ijrmhm.2024.106610.

K. Torkashvand, S. Joshi, V. Testa, F. Ghisoni, S. Morelli, G. Bolelli, L. Lusvarghi, F. Marra, M. Gupta, Tribological behavior of HVAF-sprayed WC-based coatings with alternative binders, Surface and Coatings Technology 436 (2022) 128296. https://doi.org/10.1016/j.surfcoat.2022.128296.

S. L. Liu, X. P. Zheng, G. Q. Geng, Influence of nano-WC–12Co powder addition in WC–10Co–4Cr AC-HVAF sprayed coatings on wear and erosion behaviour, Wear 269 (2010) 362-367. https://doi.org/10.1016/j.wear.2010.04.019.

Q. Wang, S. Zhang, Y. Cheng, J. Xiang, X. Zhao, G. Yang, Wear and corrosion performance of WC-10Co4Cr coatings deposited by different HVOF and HVAF spraying processes, Surface and Coatings Technology 218 (2013) 127-136. https://doi.org/10.1016/j.surfcoat.2012.12.041.

Q. Wang, Z. Tang, L. Cha, Cavitation and sand slurry erosion resistances of WC-10Co-4Cr coatings, Journal of Materials Engineering and Performance 24 (2015) 2435-2443. https://doi.org/10.1007/s11665-015-1496-z.

R. K. Kumar, M. Kamaraj, S. Seetharamu, A pragmatic approach and quantitative assessment of silt erosion characteristics of HVOF and HVAF processed WC-CoCr coatings and 16Cr5Ni steel for hydro turbine applications, Materials & Design 132 (2017) 79-95. https://doi.org/10.1016/j.matdes.2017.06.046.

Y. Li, Y. Lian, J. Cao, L. Li, Solid particle erosion behavior of HVOF/HVAF sprayed WC-Co-Cr coatings, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 230/6 (2016): 634-643. https://doi.org/10.1177/1350650115608209.

S. Hong, Y. Wu, Y. Zheng, B. Wang, W. Gao, G. Li, G. Ying, J. Lin, Effect of spray parameters on the corrosion behavior of HVOF sprayed WC-Co-Cr coatings, Journal of materials engineering and performance 23 (2014)1434-1439. https://doi.org/10.1007/s11665-014-0865-3

A. Sharma, S. K. Goel, Erosion behavior of WC–10Co–4Cr coating on 23-8-N nitronic steel by HVOF thermal spraying. Applied Surface Science 370 (2016): 418-426. https://doi.org/10.1016/j.apsusc.2016.02.163.

Q. Wang, S. Luo, S. Wang, H. Wang, C. Seshadri Ramachandran, Wear, erosion and corrosion resistance of HVOF-sprayed WC and Cr3C2 based coatings for electrolytic hard chrome replacement, International Journal of Refractory Metals and Hard Materials 81 (2019) 242-252. https://doi.org/10.1016/j.ijrmhm.2019.03.010.

A Kumar Singla, A. Bansal, V. Singh, N. Khanna, D. Kumar Goyal, J. Singla, Satish Tailor, Development, characterization, and cavitation erosion analysis of high velocity oxy-fuel (HVOF) sprayed TiC and (70Cu-30Ni)-Cr based composite coatings on SS316 steel, Tribology International 186 (2023) 108621. https://doi.org/10.1016/j.triboint.2023.108621

V. Singh, A. Bansal, A. Kumar Singla, D. Kumar Goyal, N. Khanna, Modification of SS316 steel with the assistance of high velocity oxy fuel (HVOF) process to upsurge its sustainability, In Sustainable Materials and Manufacturing Technologies, . CRC Press, 2023. 182-195. https://doi.org/10.1201/9781003291961

X. Liu, J. Kang, W. Yue, Z. Fu, L. Zhu, D. She, J. Liang, C. Wang, Performance evaluation of HVOF sprayed WC-10Co4Cr coatings under slurry erosion, Surface Engineering, 35 (2019) 816-825. https://doi.org/10.1080/02670844.2019.1568661.

V. Singh, A. Kumar Singla, A. Bansal, Influence of TiC Content on Slurry Erosion Behaviour of HVOF Sprayed Titanium Carbide and Cupronickel-Chromium Based Coatings, Journal of Ther¬mal Spray Technology 32 (2023) 1739-1757. https://doi.org/10.1007/s11666-023-01613-2.

N. Kumar, N. Arora, S. K. Goel, Slurry erosion study on nitrogen-alloyed austenitic stainless steel and weld beads, Tribology Letters 68 (2020) 92. https://doi.org/10.1007/s11249-020-01332-7.

A. K. Chauhan, D. B. Goel, S. Prakash, Erosive wear of a surface coated hydro turbine steel, Bulletin of Materials Science 33 (2010) 483-489. https://doi.org/10.1007/s12034-010-0074-0.

A. Kumar, A. Sharma, S. K. Goel, Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 23-8-N nitronic steel, Materials Science and Engineering A 637 (2015) 56-62. https://doi.org/10.1016/j.msea.2015.04.031.

H. Myalska, K. Szymański, G. Moskal, Microstructure and selected properties of WC-Co-Cr coatings deposited by high-velocity thermal spray processes, Solid State Phenomena 246 (2016) 117-122. https://doi.org/10.4028/www.scientific.net/ssp.246.117.

S. L. Liu, X. P. Zheng, G. Q. Geng, Influence of nano-WC–12Co powder addition in WC–10Co–4Cr AC-HVAF sprayed coatings on wear and erosion behaviour, Wear 269 (2010) 362-367. https://doi.org/10.1016/j.wear.2010.04.019.

K. Torkashvand, V. Krishna Selpol, M. Gupta, S. Joshi, Influence of test conditions on sliding wear performance of high-velocity air fuel-sprayed WC–CoCr coatings, Materials 14 (2021) 3074. https://doi.org/10.3390/ma14113074.

Q. Wang, S. Zhang, Y. Cheng, J. Xiang, X. Zhao, G. Yang, Wear and corrosion performance of WC-10Co4Cr coatings deposited by different HVOF and HVAF spraying processes, Surface and Coatings Technology 218 (2013) 127-136. https://doi.org/10.1016/j.surfcoat.2012.12.041.

K. Ofelia Méndez-Medrano, C. Jesús Martínez-González, F. Alvarado-Hernández, O. Jiménez, Víctor Hugo Baltazar-Hernández, H. Ruiz-Luna, Microstructure and properties characterization of WC-Co-Cr thermal spray coatings, Journal of Minerals and Materials Characterization and Engineering 6 (2018) 482-497. https://doi.org/10.4236/jmmce.2018.64034.

M. M. El Rayes, E. M. Sherif, H. S. Abdo, Comparative Study into Microstructural and Mechanical Characterization of HVOF-WC-Based Coatings, Crystals 12 (2022) 969. https://doi.org/10.3390/cryst12070969.

D. Naha, S. Chatterjee, M. Ghosh, J. Dutta Majumdar, A. Majumdar, HVOF sprayed WCCocr coating on mild steel: microstructure and wear evaluation, IOSR J. Appl. Phys. 8 (2016) 47-56. https://doi.org/10.9790/4861-08114756.

K. Fan, W. Jiang, V. Luiz, T. Gong, W. Feng, J. Ruiz-Hervias, P. Yao, Influence of WC Particle Size on the Mechanical Properties and Residual Stress of HVOF Thermally Sprayed WC–10Co–4Cr Coatings, Materials 15 (2022) 5537. https://doi.org/10.3390/ma15165537.

L. Chang, W. Wang, D. Ma, J. Xie, Deposition effects and interface structure of HVOF-sprayed multimodal WC-CoCr coatings, Journal of Materials Research 38 (2023) 4345-4356. https://doi.org/10.1557/s43578-023-01147-x.

A. Karimi, C. Verdon, G. Barbezat, Microstructure and hydro abrasive wear behaviour of high-velocity oxy-fuel thermally sprayed WC-Co (Cr) coatings, Surface and Coatings Technology 57 (1993) 81-89. https://doi.org/10.1016/0257-8972(93)90340-T.

A. Garfias Bulnes, V. Albaladejo Fuentes, I. Garcia Cano, S. Dosta, Understanding the influence of high-velocity thermal spray techniques on the properties of different anti-wear WC-based coatings, Coatings 10 (2020) 1157. https://doi.org/10.3390/coatings10121157.

Y. Y. Santana, L. JG Barbera-Sosa, J. Caro, E. S. Puchi-Cabrera, M. H. Staia, Mechanical properties and microstructure of WC–10Co–4Cr and WC–12Co thermal spray coatings deposited by HVOF, Surface engineering 24 (2008) 374-382. https://doi.org/10.1179/174329408X326380.

D. Kumar Goyal, H. Singh, H. Kumar, V. Sahni, Slurry erosive wear evaluation of HVOF-spray Cr 2 O 3 coating on some turbine steels, Journal of thermal spray technology 21 (2012) 838-851. https://doi.org/10.1007/s11666-012-9795-5.

M. Aminul Islam, T. Alam, Z. N. Farhat, A. Mohamed, A. Alfantazi, Effect of microstructure on the erosion behavior of carbon steel, Wear 332 (2015) 1080-1089. https://doi.org/10.1016/j.wear.2014.12.004.

I. A. Maekai, G. A. Harmain, Influence of operating parameters on slurry erosion of stainless steel f6nm, Tribology in Industry 42 (2020) 236. https://doi.org/10.24874/ti.780.10.19.02.

C. S. Ramesh, D. S. Devaraj, R. Keshavamurthy, B. R. Sridhar, Slurry erosive wear behaviour of thermally sprayed Inconel-718 coatings by APS process, Wear 271 (2011) 1365-1371. https://doi.org/10.1016/j.wear.2011.01.057.

S. Bhandari, H. Singh, H. Kumar, V. Rastogi, Slurry erosion performance study of detonation gun-sprayed WC-10Co-4Cr coatings on CF8M steel under hydro-accelerated conditions, Journal of thermal spray technology 21 (2012) 1054-1064. https://doi.org/10.1007/s11666-012-9799-1.

M. H. Buszko, A. K. Krella, An influence of factors of flow condition, particle and material properties on slurry erosion resistance, Advances in Materials Science 19 (2019) 28-53. https://doi.org/10.2478/adms-2019-0010.

G. Santacruz, A. Shigueaki Takimi, F. Vannucchi de Camargo, C. Pérez Bergmann, Cristiano Fragassa, Comparative study of jet slurry erosion of martensitic stainless steel with tungsten carbide HVOF coating, Metals 9 (2019) 600. https://doi.org/10.3390/met9050600.

J. Malik, I. H. Toor, W. H. Ahmed, Z. M. GaSEM, M. A. Habib, R. Ben-Mansour, and H. M. Badr, Evaluating the effect of hardness on erosion characteristics of aluminum and steels, Journal of materials engineering and performance 23 (2014) 2274-2282. https://doi.org/10.1007/s11665-014-1004-x

J. Singh, Analysis on suitability of HVOF sprayed Ni-20Al, Ni-20Cr and Al-20Ti coatings in coal-ash slurry conditions using artificial neural network model, Industrial Lubrication and Tribology 71 (2019) 972-982. https://doi.org/10.1108/ILT-12-2018-0460.

R. Kumar, S. Kumar, D. Mudgal, Silt erosion performance of high velocity oxy fuel-(HVOF) sprayed Al2O3–Cr2O3 composite coatings on turbine steel, Industrial Lubrication and Tribology 74 (2022) 572-579. https://doi.org/10.1108/ILT-08-2021-0346.

J. Du, J. Zhang, J. Xiao, C. Zhang, Slurry erosion behavior of HVOF sprayed WC-12Co and Cr3C2-25NiCr coatings deposited on 16Cr5Ni stainless steel, Surface Review and Letters 27 (2020) 1950193. https://doi.org/10.1142/S0218625X19501932.

H. S. Grewal, H. S. Arora, A. Agrawal, H. Singh, S. Mukherjee, Slurry erosion of thermal spray coatings: effect of sand concentration, Procedia Engineering 68 (2013) 484-490. https://doi.org/10.1016/j.proeng.2013.12.210.

V. Singh, A. Kumar Singla, A. Bansal, Influence of laser texturing along with PTFE topcoat on slurry and cavitation erosion resistance of HVOF sprayed VC coating, Surface and Coatings Technology 470 (2023) 129858. https://doi.org/10.1016/j.surfcoat.2023.129858.

S. Brioua, K. Belmokre, V. Debout, P. Jacquot, E. Conforto, S. Touzain, Jordi Creus, Corrosion behavior in artificial seawater of thermal-sprayed WC-CoCr coatings on mild steel by electrochemical impedance spectroscopy, Journal of solid state electrochemistry 16 (2012) 633-648. https://doi.org/10.1007/s10008-011-1403-y

Y. Huang, X. Ding, C. Yuan, Z. Yu, Z. Ding, Slurry erosion behaviour and mechanism of HVOF sprayed micro-nano structured WC-CoCr coatings in NaCl medium, Tribology International 148 (2020) 106315. https://doi.org/10.1016/j.triboint.2020.106315.

M. Sharma, D. Kumar Goyal, G. Kaushal, Tribological investigation of HVOF-sprayed coated turbine steel under varied slurry erosion conditions, Material proceedings 24 (2020) 869-879. https://doi.org/10.1016/j.matpr.2020.04.397.

X. Liu, J. Kang, W. Yue, Z. Fu, L. Zhu, D. She, J. Liang, C. Wang, Performance evaluation of HVOF sprayed WC-10Co4Cr coatings under slurry erosion, Surface Engineering 35 (2019) 816-825. https://doi.org/10.1080/02670844.2019.1568661.

D. C. Ribu, R. Rajesh, D. Thirumalaikumarasamy, A. R. Kaladgi, C. A. Saleel, K.S. Nisar, A. Afzal, Experimental investigation of erosion-corrosion performance and slurry erosion mechanism of HVOF sprayed WC-10Co coatings using design of experiment approach. Journal of Materials Research and Technology, 18 (2022), 293-314. https://doi.org/10.1016/j.jmrt.2022.01.134.

E. Sadeghimeresht, N. Markocsan, P. Nylén, A comparative study of corrosion resistance for HVAF-sprayed Fe-and Co-based coatings, Coatings 6 (2016) 16. https://doi.org/10.3390/coatings6020016.

T. Arunnellaiappan, S. Baskaran, S. Arun, R. Prithivirajan, Corrosion behaviour of detonation gun sprayed cermet coatings on AA5083, Surface Engineering 37 (2021) 263-270. https://doi.org/10.1080/02670844.2020.1807096.

J. A. Picas, E. Rupérez, M. Punset, A. Forn, Influence of HVOF spraying parameters on the corrosion resistance of WC–CoCr coatings in strong acidic environment, Surface and Coatings Technology 225 (2013) 47-57. https://doi.org/10.1016/j.surfcoat.2013.03.015.

F. Wang, F. Zhang, L. Zheng, H. Zhang, Structure and corrosion properties of Cr coating deposited on aerospace bearing steel, Applied Surface Science 423 (2017) 695-703. https://doi.org/10.1016/j.apsusc.2017.06.099.

J. E. Cho, S. Y. Hwang, K. Y. Kim, Corrosion behavior of thermal sprayed WC cermet coatings having various metallic binders in strong acidic environment, surface and coatings technology 200 (2006) 2653-2662. https://doi.org/10.1016/j.surfcoat.2004.10.142.

Published

23-04-2024 — Updated on 23-04-2024

How to Cite

Lingappa, R., Mamatha, T. G., Prabhuswamy, M. S., Singh, V., & Bansal, A. (2024). High-velocity oxy-fuel and high-velocity air fuel sprayed WC-Co-Cr coatings on solution-treated 21-4N steel for slurry and corrosion resistance: Original scientific paper. Journal of Electrochemical Science and Engineering, 14(4), 499–522. https://doi.org/10.5599/jese.2246

Issue

Section

Advanced coatings