Electrochemical behaviour of thermally treated aluminium 2024 alloy exposed to B. mojavensis
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2139Keywords:
Biocorrosion, Second phases, Impedance.Abstract
The copper-rich zone plays a key role in understanding the deterioration process of 2024 aluminium alloy. The intermetallic on the surfaces makes this alloy susceptible to both local corrosion and microbial colonization. The adhesion of bacteria on the surface could deteriorate the metallic substrate in a phenomenon known as microbiologically influenced corrosion (MIC). The triggering mechanism of MIC in 2024-T3 is unclear. An electrochemical study was conducted to determine the influence of the second phase (Al2Cu) on the corrosion of the 2024-T3 aluminium alloy exposed to bacteria. The 2024-T3 alloy was thermally treated to increase the amount of Al2Cu by nearly 67 % on the surface. The bacterium under study was collected from the corrosion products of a Chilean Air Force aircraft. The isolated bacterium was identified by 16S RNA sequencing as Bacillus mojavensis (99.99 %). Results obtained by electrochemical impedance spectroscopy showed a decreased impedance of 2024-T3 and an increased impedance of heat-treated, both samples exposed to bacteria. The increased impedance could be associated with the antibacterial effect due to the high ion release of copper on the surface, which can inhibit biofilm formation and biocorrosion.
Downloads
References
F. Ezzohra, E. Garchani, H. Lgaz, H. Lee, S.M. Ibrahim, M. Chafiq, Y. Gun, M. Rachid, Effects of heat treatment on the corrosion behavior and mechanical properties of aluminium alloy 2024, Journal of Materials Research and Technology 25 (2023) 1355-1363. https://doi.org/10.1016/j.jmrt.2023.05.278
G. S. Chen, K.-C. Wan, M. Gao, R. P. Wei, T. H. Flournoy, Transition from pitting to fatigue crack growth—modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminium alloy, Materials Science and Engineering A 219 (1996) 126-132. https://doi.org/10.1016/S0921-5093(96)10414-7
B .J. Little, J. S. Lee, Microbiologically Influenced Corrosion, John Wiley & Sons Inc., Hoboken, New Jersey, USA, 2007. https://doi.org/10.1002/047011245X
J. Yang, Y. Zhang, W. Chang, Y. Lou, H. Qian, Microbiologically influenced corrosion of FeCoNiCrMn high-entropy alloys by Pseudomonas aeruginosa biofilm, Frontiers in Microbiology 13 (2022) 1009310. https://doi.org/10.3389/fmicb.2022.1009310
S. Sivasankaran, Aluminium Alloys - Recent Trends in Processing, Characterization, Mechanical Behavior and Applications, InTech Open, London, United Kingdom, 2017. https://doi.org/10.5772/68032
J. Espinoza-Vergara, P. Molina, M. Walter, M. Gulppi, N. Vejar, F. Melo, M. Urzua, H. Muñoz, J. H. Zagal, X. Zhou, M. I. Azocar, M. A. Paez, Effect of pH on the Electrochemical Behavior of Hydrogen Peroxide in the Presence of Pseudomonas aeruginosa, Frontiers in Bioengineering and Biotechnology 9 (2021) 749057. https://doi.org/10.3389/fbioe.2021.749057
S. Baeza, N. Vejar, M. Gulppi, M. Azocar, F. Melo, A. Monsalve, J. Pérez-Donoso, C.C. Vásquez, J. Pavez, J.H. Zagal, X. Zhou, G.E. Thompson, M. A. Páez, New evidence on the role of catalase in Escherichia colimediated biocorrosion, Corrosion Science 67 (2013) 32-41. https://doi.org/10.1016/j.corsci.2012.09.047
L. Kuchariková, T. Liptáková, E. Tillová, D. Kajánek, E. Schmidová, Role of chemical composition in corrosion of aluminium alloys, Metals (Basel) 8 (2018) 581. https://doi.org/10.3390/met8080581
L. M. Escobar, J. R. Rivera, E. Arbelaez, L. F. Torres, A. Villafañe, D. Díaz-Báez, I. Mora, G. I. Lafaurie, M. Tanaka, Comparison of Cell Viability and Chemical Composition of Six Latest Generation Orthodontic Wires, International Journal of Biomaterials 2021 (2021) 8885290. https://doi.org/10.1155/2021/8885290
I. B. Beech, J. Sunner, Biocorrosion: Towards understanding interactions between biofilms and metals, Current Opinion in Biotechnology 15 (2004) 181-186. https://doi.org/10.1016/j.copbio.2004.05.001
F. Mansfeld, The interaction of bacteria and metal surfaces, Electrochimica Acta 52 (2007) 7670-7680. https://doi.org/10.1016/j.electacta.2007.05.006
B. M. Rosales, M. Iannuzzi, Aluminium AA2024 T351 aeronautical alloy. Part 1. Microbial influenced corrosion analysis, Materials Science and Engineering A 472 (2008) 15-25. https://doi.org/10.1016/j.msea.2007.06.079
D. Hu, W. Lin, J. Zeng, P. Wu, M. Zhang, L. Guo, C. Ye, K. Wan, X. Yu, Profiling the microbial contamination in aviation fuel from an airport, Biofouling 35 (2019) 856-869. https://doi.org/10.1080/08927014.2019.1671977
C. J. McNamara, T. D. Perry, R. Leard, K. Bearce, J. Dante, R. Mitchell, Corrosion of aluminium alloy 2024 by microorganisms isolated from aircraft fuel tanks, Biofouling 21 (2005) 257-265. https://doi.org/10.1080/08927010500389921
R. Smith, Biodeterioration and biodegradation, Springer Dordrecht, Germany, 1991. ISBN 978-1-85166-626-3
N. D. Vejar, J. Sacre, B. Collao, J. Perez-Donoso, M. A. Páez, F. Pineda, B. Worker, M. Sancy, Enhanced corrosion of 7075 alloy by the presence of Bacillus megaterium, International Journal of Electrochemical Science 11 (2016) 9723-9733. https://doi.org/10.20964/2016.11.33
M. Sancy, A. Abarzúa, M.I. Azócar, J.M. Blamey, F. Boehmwald, G. Gómez, N. Vejar, M. Páez, Biofilm formation on aluminium alloy 2024: A laboratory study, Journal of Electroanalytical Chemistry 737 (2015) 212-217. https://doi.org/10.1016/j.jelechem.2014.08.015
N. Vejar, S. Gutiérrez, N. Tareelap, C. Alvarado, R. Solís, C. Guerra, F. Pineda, M. Sancy, M. Páez, Influence of Bacillus safensis and Bacillus pumilus on the electrochemical behavior of 2024-T3 aluminium alloy, Bioelectrochemistry 143 (2022) 107950. https://doi.org/10.1016/j.bioelechem.2021.107950
Q. Wang, G.M. Garrity, J.M. Tiedje, J.R. Cole, Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Applied and Environmental Microbiology 73 (2007) 5261-5267. https://doi.org/10.1128/AEM.00062-07
C. Pillay, J. Lin, Metal corrosion by aerobic bacteria isolated from stimulated corrosion systems: Effects of additional nitrate sources, International Biodeterioration & Biodegradation 83 (2013) 158-165. https://doi.org/10.1016/j.ibiod.2013.05.013
J. H. Kwon, P. Choi, S. Jo, H. Oh, K.Y. Cho, Y. K. Lee, S. Kim, K. S. Eom, Identification of electrode degradation by carbon corrosion in polymer electrolyte membrane fuel cells using the distribution of relaxation time analysis, Electrochimica Acta 414 (2022) 140219. https://doi.org/10.1016/j.electacta.2022.140219
M. Kiran Kumar, C. Tyagi, A. Sahu, N. Desai, J. Manjhi, K. C. Mohan, Y. P. Reddy, S. K. Tiwari, L. K. Tomar, V. K. Sharma, Identification and Characterization of Staphylococcus aureus 16S rRNA gene isolated from different Food Specimens from South Indian Region, Journal of Drug Delivery and Therapeutics 10 (2020) 24-32. https://doi.org/10.22270/jddt.v10i5.4340
A. Monsalve, L. Parra, D. Baeza, R. Solís, H. Palza, Mechanical properties and morphological characteristics of ARALL reinforced with TRGO doped epoxy resin, Revista Matēria 23 (2018) e-12228. https://doi.org/10.1590/s1517-707620180004.0562
ASM Handbook, Volume 4, Heat treating, ASM International, Materials Park, Ohio, USA, 1991. ISBN 978 087 1703 798
V. Nelson, J. Rojas, C. Alvarado G., R. Solís, F. Pineda, M. Sancy, L. Muñoz, M. Páez, Alumoxane film for corrosion protection of 2024 aluminium alloy, Journal of Materials Research and Technology 26 (2023) 4942-4956. https://doi.org/10.1016/j.jmrt.2023.08.192
N. D. Vejar, J. Sacre, B. Collao, J. Perez-Donoso, M. A. Páez, F. Pineda, B. Worker, M. Sancy, Enhanced Corrosion of 7075 Alloy by the Presence of Bacillus megaterium, International Journal of Electrochemical Science 11 (2016) 9723-9733. https://doi.org/10.20964/2016.11.33
R. Jia, D. Yang, D. Xu, T. Gu, Anaerobic Corrosion of 304 Stainless Steel Caused by the Pseudomonas aeruginosa Biofilm, Frontiers in Microbiology 8 (2017) 2335. https://doi.org/10.3389/fmicb.2017.02335
D. Starosvetsky, J. Starosvetsky, R. Armon, Y. Ein-Eli, A peculiar cathodic process during iron and steel corrosion in sulfate reducing bacteria (SRB) media, Corrosion Science 52 (2010) 1536-1540. https://doi.org/10.1016/j.corsci.2010.01.013
S. Sagadevan, S. Vennila, A.R. Marlinda, Y. Al-Douri, M. Rafie Johan, J. Anita Lett, Synthesis and evaluation of the structural, optical, and antibacterial properties of copper oxide nanoparticles, Applied Physics A 125 (2019) 489. https://doi.org/10.1007/s00339-019-2785-4
C. You, M.A. Zabara, M.E. Orazem, B. Ulgut, Application of the Kramers-Kronig Relations to Multi-Sine Electrochemical Impedance Measurements, Journal of The Electrochemical Society 167 (2020) 020515. https://doi.org/10.1149/1945-7111/ab6824
M.-L. de Bonfils-Lahovary, L. Laffont, C. Blanc, Characterization of intergranular corrosion defects in a 2024 T351 aluminium alloy, Corrosion Science 119 (2017) 60-67. https://doi.org/10.1016/j.corsci.2017.02.020
E. Ghanbari, A. Saatchi, X. Lei, D.D. Macdonald, Studies on pitting corrosion of Al-Cu-Li alloys Part II: Breakdown potential and pit initiation, Materials 12 (2019) 1786. https://doi.org/10.3390/ma12111786
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Agencia Nacional de Investigación y Desarrollo
Grant numbers 11170419