Electrochemical behaviour of Ti6Al4V porous structures fabricated by powder metallurgy route

Original scientific paper

Authors

  • Maninder Singh Department of Mechanical Engineering, I. K. Gujral Punjab Technical University, Kapurthala, Punjab, India https://orcid.org/0000-0003-3806-3069
  • Amoljit Singh Gill Department of Mechanical Engineering, I. K. Gujral Punjab Technical University, Kapurthala, Punjab, India https://orcid.org/0000-0002-6821-5804
  • Parneet Kaur Deol Department of Pharmaceutics, G.H.G. Khalsa College of Pharmacy Gurusar Sadhar, Ludhiana, Punjab, India Corresponding authors https://orcid.org/0000-0001-7643-6167

DOI:

https://doi.org/10.5599/jese.2135

Keywords:

Titanium alloy, biomaterials, space holder, compaction pressure, corrosion
Graphical Abstract

Abstract

In this investigation, the powder metallurgy process was used to fabricate porous structures of Ti6Al4V alloy by adding space holder powder particles. The samples were fabricated with varying levels of compaction pressure and other process parameters were kept unchanged in order to investigate the variation in electrochemical behaviour. It was observed that a lower level of compaction pressure resulted in an increase in corrosion current density and rate and a decrease in polarisation resistance. The sample's inability to achieve passivity against electrochemical corrosion, when fabricated using a lower level of compaction pressure, was linked to a higher number of interconnecting micropores. The results of the microstructure analysis confirmed the significant densification of the powder particles when higher compaction pressure was used. The study recommends that a compaction pressure of 300 MPa or higher may be used for fabricating porous structures for biomedical applications.

Downloads

Download data is not yet available.

References

S. Tamilselvi, V. Raman, N. Rajendran, Evaluation of corrosion behavior of surface modified Ti-6Al-4V ELI alloy in hanks solution, Journal of Applied Electrochemistry 40 (2010) 285-293. https://doi.org/10.1007/s10800-009-9972-5

C. D. Arrieta-González, J. Porcayo-Calderon, V. M. Salinas-Bravo, J. G. Chacon-Nava, A. Martinez-Villafañe. J. G. Gonzalez-Rodriguez, Corrosion behavior of Ni-Cr based coatings in simulated human body fluid environment, International Journal of Electrochemical Science 6 (2011) 3644-3655. https://doi.org/10.1016/S1452-3981(23)18277-0

American Joint Replacement Registry, Annual Report on Hip and Knee Arthroplasty Data, 2018. https://www.wavespartnership.org/sites/waves/files/kc/WAVESAnnual-Report-2018-web_0.pdf (accessed 19. 09. 2023)

L. H. Nguyen, N. Annabi, M. Nikkhah, H. Bae, L. Binan, S. Park, Y. Kang, Y. Yang, A. Khadem-hosseini, Vascularized bone tissue engineering: approaches for potential improvement, Tissue Engineering B 18(5) (2012) 363-382. https://doi.org/10.1089/ten.teb.2012.0012

N. N. Znamenski, Implantation künstlicher zähne, Deutsche Monatsschrift für Zahnheilkunde 9 (1891) 87-107.

H. T. Hillischer, Implantation künstlicher Zähne nach dr. Znamensky, Deutsche Monatsschrift für Zahnheilkunde 9 (1891) 158-167.

R. E. Payne, Implantation of tin capsule by spreading, Items of Interest 14 (1902) 125-226

S. Limmahakhun, A. Oloyede, N. Chantarapanich, P. Jiamwatthanachai, K. Sitthiseripratip, Y. Xiao, C. Yan, Alternative designs of load−sharing cobalt chromium graded femoral stems, Materials Today Communications 12 (2017) 1-10. https://doi.org/10.1016/j.mtcomm.2017.05.002

S. Wang, L. Liu, K. Li, L. Zhu, J. Chen, Y. Hao, Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application, Materials & Design 168 (2019) 107643. https://doi.org/10.1016/j.matdes.2019.107643

D. M. D. Ehrenfest, P. G. Coelho, B. S. Kang, Y. T. Sul, T. Albrektsson, Classification of osseointegrated implant surfaces: materials, chemistry and topography, Trends in Biotechnology 28(4) (2010) 198-206. https://doi.org/10.1016/j.tibtech.2009.12.003

C. Song, L. Liu, Z. Deng, H. Lei, F. Yuan, Y. Yang, Y. Li, J. Yu, Research progress on the design and performance of porous titanium alloy bone implants, Journal of Materials Research and Technology 23 (2023) 2626-2641. https://doi.org/10.1016/j.jmrt.2023.01.155

C. E. Misch, Contemporary implant dentistry, Implant Dentistry 8(1) (1999) 90. https://journals.lww.com/implantdent/citation/1999/01000/contemporary_implant_dentistry.13.aspx

J. Bartoníček, Early history of operative treatment of fractures, Archives of Orthopaedic and Trauma Surgery 130 (2010) 1385-1396. https://doi.org/10.1007/s00402-010-1082-7

S. S. Abdalla, H. Katas, F. Azmi, M .F. M. Busra, Antibacterial and anti-biofilm biosynthesised silver and gold nanoparticles for medical applications: Mechanism of action, toxicity and current status, Current Drug Delivery 17(2) (2020) 88-100. https://doi.org/10.2174/1567201817666191227094334

G. Szczęsny, M. Kopec, D. J. Politis, Z. L. Kowalewski, A. Łazarski, T. Szolc, A review on biomaterials for orthopaedic surgery and traumatology: From past to present, Materials 15(10) (2022) 3622. https://doi.org/10.3390/ma15103622

H. R. Bakhsheshi-Rad, E. Hamzah, H. T. Low, M. Kasiri-Asgarani, S. Farahany, E. Akbari, M. H. Cho, Fabrication of biodegradable Zn-Al-Mg alloy: mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities, Materials Science and Engineering C 73 (2017) 215-219. https://doi.org/10.1016/j.msec.2016.11.138

N. El-Mahallawy, H. Palkowski, A. Klingner, A. Diaa, M. Shoeib, Effect of 1.0 wt.% Zn addition on the microstructure, mechanical properties, and bio-corrosion behaviour of micro alloyed Mg-0.24 Sn-0.04 Mn alloy as biodegradable material, Materials Today Communications 24 (2020) 100999. https://doi.org/10.1016/j.mtcomm.2020.100999

D. I. Bardos, Metallurgy of orthopaedic implants in Materials Sciences and Implant Orthopedic Surgery, R. Kossowsky, N. Kossovsky, Eds., Springer, Dordrecht, Netherlands, 1986, p.125. https://doi.org/10.1007/978-94-009-4474-9_11

D. Shekhawat, A. Singh, A. Bhardwaj and A. Patnaik. A short review on polymer, metal and ceramic based implant materials, IOP Conference Series: Materials Science and Engineering 1017(1) (2021) 012038. https://doi.org/10.1088/1757-899X/1017/1/012038

A. Sumayli. Recent trends on bioimplant materials, Materials Today: Proceedings 46 (2021) 2726-2731. https://doi.org/10.1016/j.matpr.2021.02.395

J. A. Planell, M. Navarro, Challenges of bone repair, in Bone repair biomaterials, J. A. Planell, S. M. Best, Eds., Woodhead Publishing Limited, Cambridge, UK, 2009, p.3. https://doi.org/10.1533/9781845696610.1.3

G. A. Sargent, A. P. Zane, P. N. Fagin, A. K. Ghosh, S. L. Semiatin, Low-temperature coarsening and plastic flow behavior of an alpha/beta titanium billet material with an ultrafine microstructure, Metallurgical and Materials Transactions A 39 (2008) 2949-2964. https://doi.org/10.1007/s11661-008-9650-y

A. I. Kahveci, G .E. Welsch, Effect of oxygen on the hardness and alpha/beta phase ratio of Ti6A14V alloy, Scripta Metallurgica 20(9) (1986) 1287-1290. https://doi.org/10.1016/0036-9748(86)90050-5

F. Veronesi, P. Torricelli, L. Martini, M. Tschon, G. Giavaresi, D. Bellini, V. Casagranda, F. Alemani, M. Fini, An alternative ex vivo method to evaluate the osseointegration of Ti-6Al-4V alloy also combined with collagen, Biomedical Materials 16(2) (2021) 025007. https://doi.org/10.1088/1748-605X/abdbda

J. Banhart. Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science 46(6) (2001) 559-632. https://doi.org/10.1016/S0079-6425(00)00002-5

J. Banhart, J. Baumeister, Production methods for metallic foams, MRS Online Proceedings Library 521 (1998) 121. https://doi.org/10.1557/PROC-521-121

N. Jha, D. P. Mondal, J. D. Majumdar, A. Badkul, A. K. Jha, A.K. Khare, Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route, Materials & Design 47 (2013) 810-819. https://doi.org/10.1016/j.matdes.2013.01.005

B. Goyal, A. Pandey, Critical review on porous material manufacturing techniques, properties & their applications, Materials Today: Proceedings 46 (2021) 8196-8203. https://doi.org/10.1016/j.matpr.2021.03.163

D. Prando, A. Brenna, M. V. Diamanti, S. Beretta, F. Bolzoni, M. Ormellese, M. Pedeferri. Corrosion of titanium: Part 1: Aggressive environments and main forms of degradation. Journal of Applied Biomaterials & Functional Materials 15(4) (2017) e291-e302. https://doi.org/10.5301/jabfm.5000387

K. H. W. Seah and X. Chen, A comparison between the corrosion characteristics of 316 stainless steel, solid titanium and porous titanium, Corrosion Science 34(11) (1993) 1841-1851. https://doi.org/10.1016/0010-938X(93)90021-8

K. H. W. Seah, R. Thampuran, X. Chen, S.H. Teoh, A comparison between the corrosion behaviour of sintered and unsintered porous titanium, Corrosion Science 37(9) (1995) 1333-1340. https://doi.org/10.1016/0010-938X(95)00033-G

K. H. W. Seah, R. Thampuran, X. Chen, S.H. Teoh, The influence of pore morphology on corrosion, Corrosion Science 40 (1998) 547-556. https://doi.org/10.1016/S0010-938X(97)00152-2

J. Fojt, L. Joska, J. Málek, Corrosion behaviour of porous Ti-39Nb alloy for biomedical applications, Corrosion Science 71 (2013) 78-83. https://doi.org/10.1016/j.corsci.2013.03.007

A. Rodriguez-Contreras, M. Punset, J. A. Calero, F. J. Gil, E. Ruperez, J. M. Manero, Powder metallurgy with space holder for porous titanium implants, Journal of Materials Science & Technology 76 (2021) 129-149. https://doi.org/10.1016/j.jmst.2020.11.005

N. Eliaz, Corrosion of metallic biomaterials, Materials 12(3) (2019) 407. https://doi.org/10.3390/ma12030407

E. Yılmaz, A. Gökçe, F. Findik, H. O. Gulsoy, O. İyibilgin, Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials, Journal of the Mechanical Behavior of Biomedical Materials 87 (2018) 59-67. https://doi.org/10.1016/j.jmbbm.2018.07.018

R. Khalifehzadeh, S. Forouzan, H. Arami, S. K. Sadrnezhaad, Prediction of the effect of vacuum sintering conditions on porosity and hardness of porous NiTi shape memory alloy using ANFIS, Computational Materials Science 40(3) (2007) 359-365. https://doi.org/10.1016/j.commatsci.2007.01.007

A. C. Alves, A. I. Costa, F. Toptan, J. L. Alves, I. Leonor, E. Ribeiro, R. L. Reis, A. M. P. Pinto, J. C. S . Fernandes, Effect of bio-functional MAO layers on the electrochemical behaviour of highly porous Ti, Surface and Coatings Technology 386 (2020) 125487. https://doi.org/10.1016/j.surfcoat.2020.125487

H. J. Vergara-Hernández, L Olmos, V. M. Solorio, D. Bouvard, J. Villalobos-Brito, J. Chávez, O. Jimenez, Powder Metallurgy Fabrication and Characterization of Ti6Al4V/xCu Alloys for Biomedical Applications, Metals 13(5) (2023) 888. https://doi.org/10.3390/met13050888

L. M. Rodriguez-Albelo, P. Navarro, F. J. Gotor, J. E. de la Rosa, D. Mena, F. J. García-García, A. M. Beltrán, A. Alcudia, Y. Torres, Limits of powder metallurgy to fabricate porous Ti35Nb7Zr5Ta samples for cortical bone replacements, Journal of Materials Research and Technology 24 (2023) 6212-6226. https://doi.org/10.1016/j.jmrt.2023.04.212

W. Xu, X. Lu, B. Zhang, C. Liu, S. Lv, S. Yang, X. Qu, Effects of porosity on mechanical properties and corrosion resistances of PM-fabricated porous Ti-10Mo alloy, Metals 8(3) (2018) 188. https://doi.org/10.3390/met8030188

J. Z. Carrullo, A. D. Borrás, V. A. Borrás, J. Navarro-Laboulais, J. P. Falcón, Electrochemical corrosion behavior and mechanical properties of Ti-Ag biomedical alloys obtained by two powder metallurgy processing routes, Journal of the Mechanical Behavior of Biomedical Materials 112 (2020) 104063. https://doi.org/10.1016/j.jmbbm.2020.104063

G. Dercz, I. Matuła, M. Zubko, A. Kazek-Kęsik, J. Maszybrocka, W. Simka, J. Dercz, P. Świec, I. Jendrzejewska, Synthesis of porous Ti-50Ta alloy by powder metallurgy, Materials Characterization 142 (2018) 124-136. https://doi.org/10.1016/j.matchar.2018.05.033

W. Xu, X. Lu, M.D. Hayat, J. Tian, C. Huang, M. Chen, X. Qu, C. Wen, Fabrication and properties of newly developed Ti35Zr28Nb scaffolds fabricated by powder metallurgy for bone-tissue engineering, Journal of Materials Research and Technology 8(5) (2019) 3696-3704. https://doi.org/10.1016/j.jmrt.2019.06.021

I. Çaha, A. Alves, C. Chirico, A. Pinto, S. Tsipas, E. Gordo, F. Toptan, Corrosion and tribocorrosion behavior of Ti-40Nb and Ti-25Nb-5Fe alloys processed by powder metallurgy, Metallurgical and Materials Transactions A 51 (2020) 3256-3267. https://doi.org/10.1007/s11661-020-05757-6

S. A. Tsipas, E. Gordo. A. Jiménez-Morales, Oxidation and corrosion protection by halide treatment of powder metallurgy Ti and Ti6Al4V alloy, Corrosion Science 88 (2014) 263-274. https://doi.org/10.1016/j.corsci.2014.07.037

M. P. I. Federation, Standard test methods for metal powders and powder metallurgy products, Metal Powder Industries Federation, Princeton, USA, 2019.

Z. Chen, X. Yan, S. Yin, L. Liu, X. Liu, G. Zhao, W. Ma, W. Qi, Z. Ren, H. Liao, M. Liu, Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth, Materials Science and Engineering C 106 (2020) 110289. https://doi.org/10.1016/j.msec.2019.110289

C. M. Murphy, F.J. O’Brien, Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds, Cell Adhesion & Migration 4(3) (2010) 377-381. https://doi.org/10.4161/cam.4.3.11747

P. Ouyang, H. Dong, X. He, X. Cai, Y. Wang, J. Li, H. Li, Z. Jin, Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth, Materials & Design 183 (2019) 108151. https://doi.org/10.1016/j.matdes.2019.108151

S. Lu, D. Jiang, S. Liu, H. Liang, J. Lu, H. Xu, J. Li, J. Xiao, J. Zhang, Q. Fei, Effect of different structures fabricated by additive manufacturing on bone ingrowth, Journal of Biomaterials Applications 36(10) (2022) 1863-1872. https://doi.org/10.1177/08853282211064398

J. P. Zheng, L. J. Chen, D. Y. Chen, C. S. Shao, M. F. Yi, B. Zhang, Effects of pore size and porosity of surface-modified porous titanium implants on bone tissue ingrowth, Transactions of Nonferrous Metals Society of China 29(12) (2019) 2534-2545. https://doi.org/10.1016/S1003-6326(19)65161-7

N. Abbasi, S. Hamlet, R. M. Love, N.T. Nguyen. Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices 5(1) (2020) 1-9. https://doi.org/10.1016/j.jsamd.2020.01.007

P. Du, T. Xiang, Z. Cai, G. Xie, The influence of porous structure on the corrosion behavior and biocompatibility of bulk Ti-based metallic glass, Journal of Alloys and Compounds 906 (2022) 164326. https://doi.org/10.1016/j.jallcom.2022.164326

Y. H. Li, G. B. Rao, L. J. Rong, Y. Y. Li, The influence of porosity on corrosion characteristics of porous NiTi alloy in simulated body fluid, Materials Letters 57(2) (2002) 448-451. https://doi.org/10.1016/S0167-577X(02)00809-1

F. Rosalbino, D. Maccio, G. Scavino, A. Saccone, In vitro corrosion behaviour of Ti-Nb-Sn shape memory alloys in Ringer’s physiological solution, Journal of Materials Science: Materials in Medicine 23 (2012) 865-871. https://doi.org/10.1007/s10856-012-4560-3

P. E. Moraes, R. J. Contieri, E. S. Lopes, A. Robin, R. Caram, Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti-Nb-Sn alloys, Materials Characterization 96 (2014) 273-281. https://doi.org/10.1016/j.matchar.2014.08.014

J. Xu, W. Hu, S. Xu, P. Munroe, Z.H. Xie, Electrochemical properties of a novel β-Ta2O5 nanoceramic coating exposed to simulated body solutions, ACS Biomaterials Science & Engineering 2(1) (2016) 73-89. https://doi.org/10.1021/acsbiomaterials.5b00384

K. Li, Y. Li, X. Huang, D. Gibson, Y. Zheng, J. Liu, L. Sun, Y.Q. Fu, Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films, Applied Surface Science 414 (2017) 63-67. https://doi.org/10.1016/j.apsusc.2017.04.070

A. C. Alves, I. Sendão, E. Ariza, F. Toptan, P. Ponthiaux, A. M. P. Pinto, Corrosion behaviour of porous Ti intended for biomedical applications, Journal of Porous Materials 23 (2016) 1261-1268. https://doi.org/10.1007/s10934-016-0185-0

E. McCafferty. Validation of corrosion rates measured by the Tafel extrapolation method. Corrosion Science 47(12) (2005) 3202-3215. https://doi.org/10.1016/j.corsci.2005.05.046

L. L. Liu, J. Xu, X. Lu, P. Munroe, Z. H. Xie, Electrochemical corrosion behavior of nanocrystalline β-Ta coating for biomedical applications, ACS Biomaterials Science & Engineering 2(4) (2016) 579-594. https://doi.org/10.1021/acsbiomaterials.5b00552

Q. Liu, D. Chen, Z. Kang, One-Step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy, ACS Applied Materials Interfaces 7(3) (2015) 1859-1867. https://doi.org/10.1021/am507586u

A. S. Jabur, Effect of powder metallurgy conditions on the properties of porous bronze, Powder Technology 237 (2013) 477-483. https://doi.org/10.1016/j.powtec.2012.12.027

F. Xie, X. He, S. Cao, M. Mei, X. Qu, Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti-Mo alloys for biomedical applications, Electrochimica Acta 105 (2013) 121-129. https://doi.org/10.1016/j.electacta.2013.04.105

Published

21-02-2024

How to Cite

Singh, M., Gill, A. S., & Deol, P. K. (2024). Electrochemical behaviour of Ti6Al4V porous structures fabricated by powder metallurgy route: Original scientific paper. Journal of Electrochemical Science and Engineering. https://doi.org/10.5599/jese.2135

Issue

Section

Advanced coatings