Cobalt and copper-based metal-organic frameworks synthesis and their supercapacitor application
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2096Keywords:
Solvothermal synthesis, benzene dicarboxylic acid ligand, energy storage, specific capacitanceAbstract
In this study, two different metal-organic frameworks (MOFs) were synthesized using copper and cobalt metal ions with benzenedicarboxylic acid (bdc) as a common ligand. The prepared MOFs were characterized using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy-energy dispersive spectroscopy. Also, the electrochemical characteristics were analyzed using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy methods. Structural characterizations indicate that Co-bdc MOF is composed of three-dimensional non-uniform colloids and Cu-bdc MOF has a regular three-dimensional cuboidal structure, possessing good crystalline structure. The Cu-bdc MOF exhibited a maximum specific capacitance of 171 F/g, while Co-bdc MOF showed 368 F/g at the current density of 1 A/g. The solution resistance for the Co-bdc MOF was 0.09 Ω in comparison to 1.25 Ω for the Cu-bdc MOF. Also, the Co-bdc MOF demonstrated better cycling performance by retaining 85 % of its capacity after 2000 charge-discharge cycles. In contrast, the stability of the Cu-bdc MOF was lower, with only 78 % retention in capacity. Conclusively, the Co-bdc MOF demonstrated superior specific capacitance, lower resistance, and enhanced cyclic stability in 3 M KOH electrolyte system.
Downloads
References
J. R. Miller, P. Simon, Electrochemical capacitors for energy management, Science 321 (2008) 651-652. https://doi.org/10.1126/science.1158736
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials 7 (2008) 845-854. https://doi.org/10.1038/nmat2297
S. G. Sayyed, M. A. Mahadik, A. V. Shaikh, J. S. Jang, H. M. Pathan, Nano-metal oxide based supercapacitor via electrochemical deposition, ES Energy & Environment 3 (2019) 25-44. 10.30919/esee8c211
A. R. Ansari, S. A. Ansari, N. Parveen, M. O. Ansari, Z. Osman, Ag nanoparticles anchored reduced graphene oxide sheets@ nickel oxide nanoflakes nanocomposites for enhanced capacitive performance of supercapacitors, Inorganic Chemistry Communications 150 (2023) 110519. https://doi.org/10.1016/j.inoche.2023.110519
S. A. Ansari, Graphene quantum dots: novel properties and their applications for energy storage devices Nanomaterials 12(21) (2022) 3814. https://doi.org/10.3390/nano12213814
F. Zhu, W. Liu, Y. Liu, and W. Shi, Construction of porous interface on CNTs@ NiCo-LDH core-shell nanotube arrays for supercapacitor applications, Chemical Engineering Journal 383 (2020) 123150. https://doi.org/10.1016/j.cej.2019.123150
G. Srikesh and A. Samson Nesaraj, Wet Chemical Synthesis of Graphene Containing Co/Mn Co-doped NiONanocrystalline Materials: Efficient Electrode for Electrochemical Supercapacitors, Iranian Journal of Chemistry and Chemical Engineering 40(5) (2021) 1406-1413. https://doi.org/10.30492/ijcce.2020.40537
N. Parveen, G. M. Alsulaim, S. A. Alsharif, H. H. Almutairi, H. A. Alali, S. A. Ansari, M. M. Ahmad Renewable biopolymer-derived carbon–nickel oxide nanocomposite as an emerging electrode material for energy storage applications, Journal of Science: Advanced Materials and Devices 8(3) (2023) 100591. https://doi.org/10.1016/j.jsamd.2023.100591
F. Arshad, N. Parveen, S. A. Ansari, J. A. Khan, M. P. Sk, Renewable biopolymer-derived carbon–nickel oxide nanocomposite as an emerging electrode material for energy storage applications, Environmental Science and Pollution Research, 30(28) (2023) 71464-71471. https://doi.org/10.1007/s11356-022-22626-4
D. D. Babu, M. Mathew, S. Thomas, Supercapacitors based on MXenes (transition metal carbides and nitrides) and their hybrids, Fundamentals and Supercapacitor Applications of 2D Materials (2021) 217-233. https://doi.org/10.1016/B978-0-12-821993-5.00006-6
S. Krishnan, A. K. Gupta, M. K. Singh, N. Guha, D. K. Rai, Nitrogen-rich Cu-MOF decorated on reduced graphene oxide nanosheets for hybrid supercapacitor applications with enhanced cycling stability, Chemical Engineering Journal 435 (2022) 135042. https://doi.org/10.1016/j.cej.2022.135042
H. García, S. Navalón (Eds.), Metal-organic frameworks: Applications in separations and catalysis, John Wiley & Sons, 2018. ISBN: 978-3-527-34313-3
L. He, W. Li, Z. W. Jiang, T. T. Zhao, Y. Li, C. M. Li, Y. F. Li. Novel solvent-triggered transformation of Cu-based metal-organic gels to highly monodisperse metal-organic frameworks with controllable shapes, Chemical Engineering Journal 374 (2019) 1231-1240. https://doi.org/10.1016/j.cej.2019.06.026
S. Wang, S. Tang, Rapid and facile synthesis of metal organic framework materials by reaction crystallization in supercritical CO2, Materials Letters 251 (2019) 65-68. https://doi.org/10.1016/j.matlet.2019.05.038
S. A. Tirmizi, A. Badshah, H. M. Ammad, M. Jawad, S. M. Abbas, U. A. Rana S. U. D. Khan, Synthesis of highly stable MOF-5@ MWCNTs nanocomposite with improved hydrophobic properties, Arabian Journal of Chemistry 11 (2018) 26-33. https://doi.org/10.1016/j.arabjc.2017.01.012
J. Klinowski, F. A. A. Paz, P. Silva, J. Rocha, Microwave-assisted synthesis of metal–organic frameworks, Dalton Transactions 40 (2011) 321-330. https://doi.org/10.1039/C0DT00708K
D. W. Jung, D. A. Yang, J. Kim, J. Kim, and W. S. Ahn, Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent, Dalton Transactions 39 (2010) 2883-2887. https://doi.org/10.1039/B925088C
H. M. Yang, L. I. U. Xian, X. L. Song, T. L. Yang, Z. H. Liang, and C. M. Fan, In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr, Transactions of Nonferrous Metals Society of China 25 (2015) 3987-3994. https://doi.org/10.1016/S1003-6326(15)64047-X
N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe, O. M. Yaghi. Rod packings and metal− organic frameworks constructed from rod-shaped secondary building units, Journal of the American Chemical Society 127(5) (2005) 1504-1518. https://doi.org/10.1021/ja045123
R. Nivetha, J. Jana, S. Ravichandran, H. N. Diem, T. Van Phuc, J. S. Chung, S. H. Hur, Two-dimensional bimetallic Fe/M-(Ni, Zn, Co and Cu) metal organic framework as efficient and stable electrodes for overall water splitting and supercapacitor applications, Journal of Energy Storage 61 (2023) 106702. https://doi.org/10.1016/j.est.2023.106702
T. Sivam, N. S. K.Gowthaman, H. N. Lim, Y. Andou, P. Arul, E. Narayanamoorthi, S. A. John, Tunable electrochemical behavior of dicarboxylic acids anchored Co-MOF: Sensitive determination of rutin in pharmaceutical samples, Colloids and Surfaces A: Physicochemical and Engineering Aspects 622 (2021) 126667. https://doi.org/10.1016/j.colsurfa.2021.126667
A. Ehsani, S. Nejatbakhsh, A. M. Soodmand, M. E. Farshchi, H. Aghdasinia, High-performance catalytic reduction of 4-nitrophenol to 4-aminophenol using M-BDC (M= Ag, Co, Cr, Mn, and Zr) metal-organic frameworks, Environmental Research 227 (2023) 115736. https://doi.org/10.1016/j.envres.2023.115736
G. Zhan, L. Fan, F. Zhao, Z. Huang, B. Chen, X. Yang, S. F. Zhou, Fabrication of Ultrathin 2D Cu‐BDC Nanosheets and the Derived Integrated MOF Nanocomposites, Advanced Functional Materials 29(9) (2019) 1806720. https://doi.org/10.1002/adfm.201806720
G. Zheng, Z. Xing, X. Gao, C. Nie, Z. Xu, Z. Ju, Fabrication of 2D Cu-BDC MOF and its derived porous carbon as anode material for high-performance Li/K-ion batteries, Applied Surface Science 559 (2021) 149701. https://doi.org/10.1016/j.apsusc.2021.149701
S. Sadjadi, F. Koohestani, Palladated composite of Cu-BDC MOF and perlite as an efficient catalyst for hydrogenation of nitroarenes, Journal of Molecular Structure 1250 (2022) 131793. https://doi.org/10.1016/j.molstruc.2021.131793
S. Rostamnia, H. Alamgholiloo, X. Liu, Pd-grafted open metal site copper-benzene-1, 4-dicarboxylate metal organic frameworks (Cu-BDC MOF’s) as promising interfacial catalysts for sustainable Suzuki coupling, Journal of Colloid and Interface Science 469 (2016) 310-317. https://doi.org/10.1016/j.jcis.2016.02.021
N. Y. Nikravesh, M. Beygzadeh, M. Adl, Microporous MOF-5@ AC and Cu-BDC@ AC Composite Materials for Methane Storage, International Journal of Energy Research 2023 (2023) 2282746. https://doi.org/10.1155/2023/2282746
R. S. Salama, S. A. El-Hakam, S. E. Samra, S. M. El-Dafrawy, A. I. Ahmed, Adsorption, equilibrium and kinetic studies on the removal of methyl orange dye from aqueous solution by using of copper metal organic framework (Cu-BDC), International Journal of Modern Chemistry 10(2) (2018) 195-207.
M. K. Singh, A. K. Gupta, S. Krishnan, N. Guha, S. Marimuthu, D. K. Rai, A new hierarchically porous Cu-MOF composited with rGO as an efficient hybrid supercapacitor electrode material Journal of Energy Storage 43 (2021) 103301. https://doi.org/10.1016/j.est.2021.103301
S. Krishnan, A. K. Gupta, M. K. Singh, N.Guha, D. K. Rai, Nitrogen-rich Cu-MOF decorated on reduced graphene oxide nanosheets for hybrid supercapacitor applications with enhanced cycling stability, Chemical Engineering Journal 435 (2022) 135042. https://doi.org/10.1016/j.cej.2022.135042
A. K. Gupta, M. Saraf, P. K. Bharadwaj, S. M. Mobin, Dual functionalized CuMOF-based composite for high-performance supercapacitors, Inorganic Chemistry 58 (2019) 9844-9854. https://doi.org/10.1021/acs.inorgchem.9b00909
Z. Neisi, Z. Ansari-Asl, A. S. Dezfuli, Polyaniline/Cu (II) metal-organic frameworks composite for high performance supercapacitor electrode, Journal of Inorganic and Organometallic Polymers and Materials 29 (2019) 1838-1847. https://doi.org/10.1007/s10904-019-01145-9
Z. Maliha, M. Rani, R. Neffati, A. Mahmood, M. Z. Iqbal, A. Shah, Investigation of copper/cobalt MOFs nanocomposite as an electrode material in supercapacitors, International Journal of Energy Research 46 (2022) 17404-17415. https://doi.org/10.1002/er.8406
R. Ramachandran, C. Zhao, D. Luo, K. Wang, F. Wang, Synthesis of copper benzene-1, 3, 5-tricarboxylate metal organic frameworks with mixed phases as the electrode material for supercapacitor applications, Applied Surface Science 460 (2018) 33-39. https://doi.org/10.1016/j.apsusc.2017.11.271
M. Azadfalah, A. Sedghi, H. Hosseini, Synthesis of nano-flower metal–organic framework/graphene composites as a high-performance electrode material for supercapacitors, Journal of Electronic Materials 48 (2019) 7011-7024. https://doi.org/10.1007/s11664-019-07505-y
S. Ghosh, C. K. Maity, G. C. Nayak, H. P. Nayek, A cobalt (II) metal-organic framework featuring supercapacitor application, Journal of Solid State Chemistry 282 (2020) 121093 https://doi.org/10.1016/j.jssc.2019.121093
N. S. Punde, C. R. Rawool, A. S. Rajpurohit, S. P. Karna, A. K. Srivastava, Hybrid composite based on porous cobalt‐benzenetricarboxylic acid metal organic framework and graphene nanosheets as high performance supercapacitor electrode, ChemistrySelect 3 (2018) 11368-11380. https://doi.org/10.1002/slct.201802721
M. Azadfalah, A. Sedghi, H. Hosseini, H. Kashani, Cobalt based metal organic framework/graphene nanocomposite as high performance battery-type electrode materials for asymmetric supercapacitors, Journal of Energy Storage 33 (2021) 101925. https://doi.org/10.1016/j.est.2020.101925
R. Yuniasari, F. Amri, S. A. Abrori, N. L. W. Septiani, M. Rezki, M. Z. Fahmi, B. Yuliarto, A graphene-modified Co-BDC metal-organic frameworks (Co-MOF) for electrochemical non-enzymatic glucose sensing, IOP Conference Series: Materials Science and Engineering 1045 (2021) 012010. 10.1088/1757-899X/1045/1/012010
R. Khajavian, K. Ghani, Fabrication of [Cu2(bdc)2(bpy)]n thin films using coordination modulation-assisted layer-by-layer growth, CrystEngComm 20 (2018) 1546-1552. https://doi.org/10.1039/C7CE02031G
M. Pamei, S. Kumar, A. G. Achumi, A. Puzari, Supercapacitive amino-functionalized cobalt and copper metal-organic frameworks with varying surface morphologies for energy storage, Journal of Electroanalytical Chemistry 924 (2022) 116885. https://doi.org/10.1016/j.jelechem.2022.116885
G. Zhan, L. Fan, F. Zhao, Z. Huang, B. Chen, X. Yang, F. Zhou, Fabrication of Ultrathin 2D Cu‐BDC Nanosheets and the Derived Integrated MOF Nanocomposites, Advanced Functional Materials 29(9) (2019) 1806720. https://doi.org/10.1002/adfm.201806720
A. Nayak, S. Viegas, H. Dasari, N. Sundarabal, Cu-BDC and Cu2O Derived from Cu-BDC for the Removal and Oxidation of Asphaltenes: A Comparative Study, ACS Omega 7 (2022) 34966-34973. https://doi.org/10.1021/acsomega.2c03574
L. X. Li, D. Xu, X. Q. Li, W. C. Liu, Y. Jia, Excellent fluoride removal properties of porous hollow MgO microspheres, New Journal of Chemistry 38 (2014) 5445-5452. https://doi.org/10.1039/C4NJ01361A
A. Ansari, A. Ali, M. Asif, Shamsuzzaman, Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines, New Journal of Chemistry 42 (2018) 184-197. https://doi.org/10.1039/C7NJ03742B
M. da Silva, D. A. de Lima Almeida, S. S. Oishi, A. B. Couto, N. G. Ferreira, From electrode to device characterizations of polyaniline/micro and nanodiamond/carbon fiber as ternary composites applied as supercapacitor, Journal of Solid State Electrochemistry 23 (2019) 1871-1885. https://doi.org/10.1007/s10008-019-04297-3
Q. Li, Q. Zhang, C. Liu, J. Sun, J. Guo, J. Zhan, Y. Yao, Flexible all-solid-state fiber-shaped Ni–Fe batteries with high electrochemical performance, Journal of Materials Chemistry A 7(2) (2019) 520-530. https://doi.org/10.1039/C8TA09822K
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.