Primary aluminum-air flow battery for high-power applications: Optimization of power and self-discharge

Original scientific paper

Authors

  • Dayatri Bolaños-Picado Departamento de Ingeniería Química and Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 11501 2060, Sabanilla de Montes de Oca, San José, Costa Rica. https://orcid.org/0000-0003-0665-020X
  • Cindy Torres 1Departamento de Ingeniería Química and 3Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), 11501 2060, Sabanilla de Montes de Oca, San José, Costa Rica. https://orcid.org/0000-0001-8312-0814
  • Diego González-Flores Centro de Electroquímica y Energía Química (CELEQ), Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA) y Escuela de Química, Universidad de Costa Rica, San José, Costa Rica https://orcid.org/0000-0002-0403-2494

DOI:

https://doi.org/10.5599/jese.2075

Keywords:

Ammonium metavanadate, conversion coatings, aluminum alloys, forced flow, primary power source, backup battery
Graphical Abstract

Abstract

Aluminum-air batteries are a front-runner technology in applications requiring a primary energy source. Aluminum-air flow batteries have many advantages, such as high energy density, low price, and recyclability. One of the main challenges with aluminum-air batteries is achieving high power while parasitic corrosion and self-discharge are minimized. In this study, the optimization of an aluminum-air flow cell by multiple-parameters analysis and integration of a four-cell stack are shown. We also studied the incorporation of ammonium metavanadate (NH4VO3) as anticorrosive in 4 mol L-1 KOH electrolyte by discharge and polarization plots. It was concluded that NH4VO3 is an efficient anticorrosive at low currents, but it limits the battery reaction at high-current and high-power applications. Nevertheless, high currents inhibit the corrosion reaction using 4 mol L-1 KOH electrolyte, allowing high power and capacity without anticorrosive additives. The flow in the stack also plays a significant role, and parallel flow is suggested over cascade flow since the latter results in the progressive accumulation of hydrogen as the electrolyte flows through the stack.

Downloads

Download data is not yet available.

References

T. Leisegang, F. Meutzner, M. Zschornak, W. Münchgesang, R. Schmid, T. Nestler, R. A. Eremin, A.A. Kabanov, V.A. Blatov, D.C. Meyer, The Aluminum-Ion Battery: A Sustainable and Seminal Concept?, Frontiers in Chemistry 7 (2019) 268. https://doi.org/10.3389/fchem.2019.00268

F. Cheng, J. Chen, Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts, Chemical Society Reviews 41 (2012) 2172-2192. https://doi.org/10.1039/c1cs15228a

Li, Qingfeng, N. J. Bjerrum, Aluminum as anode for energy storage and conversion: a review, Journal of Power Sources 110 (2002) 1-10. https://doi.org/10.1016/S0378-7753(01)01014-X

J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, J. Cho, Metal-air batteries with high energy density: Li-air versus Zn-air, Advanced Energy Materials 1 (2011) 34-50. https://doi.org/10.1002/aenm.201000010

G. A. Elia, K. V. Kravchyk, M. V. Kovalenko, J. Chacón, A. Holland, R. G. A. Wills, An overview and prospective on Al and Al-ion battery technologies, Journal of Power Sources 481 (2021) 228870. https://doi.org/10.1016/j.jpowsour.2020.228870

G. A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin, E. Knipping, W. Peters, J. F. Drillet, S. Passerini, R. Hahn, An Overview and Future Perspectives of Aluminum Batteries, Advanced Materials 28 (2016) 7564-7579. https://doi.org/10.1002/adma.201601357

Y. Xu, Y. Zhao, J. Ren, Y. Zhang, H. Peng, An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance, Angewandte Chemie 128 (2016) 8111-8114. https://doi.org/10.1002/ange.201601804

Y. Wang, W. Pan, H. Y. H. Kwok, H. Zhang, X. Lu, D.Y.C. Leung, Liquid-free Al-air batteries with paper-based gel electrolyte: A green energy technology for portable electronics, Journal of Power Sources 437 (2019) 226896. https://doi.org/10.1016/j.jpowsour.2019.226896

Y. Wang, H. Y. H. Kwok, W. Pan, Y. Zhang, H. Zhang, X. Lu, D.Y.C. Leung, Combining Al-air battery with paper-making industry, a novel type of flexible primary battery technology, Electrochimica Acta 319 (2019) 947-957. https://doi.org/10.1016/j.electacta.2019.07.049

Y. Liu, Q. Sun, W. Li, K. R. Adair, J. Li, X. Sun, A comprehensive review on recent progress in aluminum-air batteries, Green Energy and Environment 2 (2017) 246-277. https://doi.org/10.1016/j.gee.2017.06.006

E. Khasin, Electrolyte System for Metal-Air Batteries and Methods for Use Thereof, US 2013/0034781, 2013.

J. Paniagua Rojas, J.E. González-Hernández, J. M. Cubero-Sesin, Z. Horita, D. González-Flores, Benchmarking of Aluminum Alloys Processed by High-Pressure Torsion: Al-3% Mg Alloy for High-Energy Density Al-Air Batteries, Energy and Fuels 37 (2023) 4632-4640. https://doi.org/10.1021/acs.energyfuels.2c03722

Y. Ma, A. Sumboja, W. Zang, S. Yin, S. Wang, S. J. Pennycook, Z. Kou, Z. Liu, X. Li, J. Wang, Flexible and Wearable All-Solid-State Al-Air Battery Based on Iron Carbide Encapsulated in Electrospun Porous Carbon Nanofibers, ACS Applied Materials & Interfaces 11 (2019) 1988-1995. https://doi.org/10.1021/acsami.8b14840

Y. Wang, H. Y. H. Kwok, W. Pan, H. Zhang, X. Lu, D. Y. C. Leung, Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability, Applied Energy 251 (2019) 113342. https://doi.org/10.1016/j.apenergy.2019.113342

S. Feng, G. Yang, D. Zheng, L. Wang, W. Wang, Z. Wu, F. Liu, A dual-electrolyte aluminum/air microfluidic cell with enhanced voltage, power density and electrolyte utilization via a novel composite membrane, Journal of Power Sources 478 (2020) 228960. https://doi.org/10.1016/j.jpowsour.2020.228960

R. Buckingham, T. Asset, P. Atanassov, Aluminum-air batteries: A review of alloys, electrolytes and design, Journal of Power Sources 498 (2021) 229762. https://doi.org/10.1016/j.jpowsour.2021.229762

R. Mori, Recent Developments for Aluminum-Air Batteries, Electrochemical Energy Reviews 3 (2020) 344-369. https://doi.org/10.1007/s41918-020-00065-4

L. Fan, H. Lu, J. Leng, Z. Sun, C. Chen, The Study of Industrial Aluminum Alloy as Anodes for Aluminum-Air Batteries in Alkaline Electrolytes, Journal of The Electrochemical Society 163 (2016) A8-A12. https://doi.org/10.1149/2.0021602jes

M. Pino, J. Chacón, E. Fatás, P. Ocón, Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries, Journal of Power Sources 299 (2015) 195-201. https://doi.org/10.1016/j.jpowsour.2015.08.088

Y. J. Cho, I. J. Park, H. J. Lee, J. G. Kim, Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity, Journal of Power Sources 277 (2015) 370-378. https://doi.org/10.1016/j.jpowsour.2014.12.026

L. Fan, H. Lu, The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes, Journal of Power Sources 284 (2015) 409-415. https://doi.org/10.1016/j.jpowsour.2015.03.063

J. Ren, J. Ma, J. Zhang, C. Fu, B. Sun, Electrochemical performance of pure Al, Al-Sn, Al-Mg and Al-Mg-Sn anodes for Al-air batteries, Journal of Alloys and Compounds 808 (2019) 151708. https://doi.org/10.1016/j.jallcom.2019.151708

M. Nestoridi, D. Pletcher, R. J. K. Wood, S. Wang, R. L. Jones, K. R. Stokes, I. Wilcock, The study of aluminium anodes for high power density Al/air batteries with brine electrolytes, Journal of Power Sources 178 (2008) 445-455.https://doi.org/10.1016/j.jpowsour.2007.11.108

H. Moghanni-Bavil-Olyaei, J. Arjomandi, Enhanced electrochemical performance of Al-0.9Mg-1Zn-0.1Mn-0.05Bi-0.02In fabricated from commercially pure aluminum for use. as the anode of alkaline batteries, RSC Advances 6 (2016) 28055-28062. https://doi.org/10.1039/c6ra02113a

Q. Wang, H. Miao, Y. Xue, S. Sun, S. Li, Z. Liu, Performances of an Al-0.15 Bi-0.15 Pb-0.035 Ga alloy as an anode for Al-air batteries in neutral and alkaline electrolytes, RSC Advances 7 (2017) 25838-25847. https://doi.org/10.1039/c7ra02918g

J. Ma, W. Li, G. Wang, Y. Xiong, Y. Li, F. Ren, Influences of L-Cysteine / Zinc Oxide Additive on the Electrochemical Behavior of Pure Aluminum in Alkaline Solution, Journal of The Electrochemical Society 165 (2018) 266-272. https://doi.org/10.1149/2.1071802jes

C. Zhu, H. Yang, A. Wu, D. Zhang, L. Gao, T. Lin, Modified alkaline electrolyte with 8-hydroxyquinoline and ZnO complex additives to improve Al-air battery, Journal of Power Sources 432 (2019) 55-64. https://doi.org/10.1016/j.jpowsour.2019.05.077

D. Wang, H. Li, J. Liu, D. Zhang, L. Gao, L. Tong, Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries, Journal of Power Sources 293 (2015) 484-491. https://doi.org/10.1016/j.jpowsour.2015.05.104

Q. X. Kang, T. Y. Zhang, X. Wang, Y. Wang, X. Y. Zhang, Effect of cerium acetate and L-glutamic acid as hybrid electrolyte additives on the performance of Al - air battery, Journal of Power Sources 443 (2019) 227251. https://doi.org/10.1016/j.jpowsour.2019.227251

J. Liu, D. Wang, D. Zhang, L. Gao, T. Lin, Synergistic effects of carboxymethyl cellulose and ZnO as alkaline electrolyte additives for aluminium anodes with a view towards Al-air batteries, Journal of Power Sources 335 (2016) 1-11. https://doi.org/10.1016/j.jpowsour.2016.09.060

A. P. Atencio, J. R. Aviles, M. L. Montero, D. González-Flores, P. Ocón, Performance Improvement of Alkaline-Electrolyte Aluminum-Air Batteries by NH4VO3-Based Additives, Energy & Fuels 36 (2022) 2851-2860. https://doi.org/10.1021/acs.energyfuels.1c04259

A. P. Atencio, J. R. Aviles, D. Bolaños, R. Urcuyo, M. L. Montero, D. González-Flores, P. Ocón, Anticorrosive additives for alkaline electrolyte in Al-air batteries: NH4VO3 and polyoxometalates, Electrochemical Science Advances 2 (2022) e2100125. https://doi.org/10.1002/elsa.202100125

Z. Moghadam, M. Shabani-Nooshabadi, M. Behpour, Electrochemical performance of aluminium alloy in strong alkaline media by urea and thiourea as inhibitor for aluminium-air batteries, Journal of Molecular Liquids 242 (2017) 971-978. https://doi.org/10.1016/j.molliq.2017.07.119

M. Iannuzzi, G. S. Frankel, Mechanisms of corrosion inhibition of AA2024-T3 by vanadates, Corrosion Science 49 (2007) 2371-2391. https://doi.org/10.1016/j.corsci.2006.10.027

K. Xhanari, M. Finšgar, Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review, Arabian Journal of Chemistry 12 (2019) 4646-4663. https://doi.org/10.1016/j.arabjc.2016.08.009

M. W. Kendig, R. G. Buchheit, Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings, Corrosion 59 (2003) 379-400. https://doi.org/10.5006/1.3277570

G. S. Frankel, R. L. McCreery, Inhibition of Al Alloy Corrosion by Chromates, Electrochemical Society Interface 10 (2001) 34-38.

O. Lopez-Garrity, G. S. Frankel, Corrosion inhibition of AA2024-T3 by sodium silicate, Electrochimica Acta 130 (2014) 9-21. https://doi.org/10.1016/j.electacta.2014.02.117

R. K. Gupta, N.L. Sukiman, K. M. Fleming, M. A. Gibson, N. Birbilis, Electrochemical behavior and localized corrosion associated with Mg2Si particles in Al and Mg alloys, ECS Electrochemistry Letters 1 (2012) C1-C3. https://doi.org/10.1149/2.002201eel

A. A. Mohamad, Electrochemical properties of aluminum anodes in gel electrolyte-based aluminum-air batteries, Corrosion Science 50 (2008) 3475-3479. https://doi.org/10.1016/j.corsci.2008.09.001

J. Xie, P. He, R. Zhao, J. Yang, Numerical modeling and analysis of the performance of an aluminum-air battery with alkaline electrolyte, Processes 8 (2020) 658 https://doi.org/10.3390/PR8060658

R. Zhao, J. Xie, H. Wen, F. Wang, J. Yang, D. Zhang, Performance modeling and parameter sensitivity analyses of an aluminum-air battery with dual electrolyte structure, Journal of Energy Storage 32 (2020) 101696. https://doi.org/10.1016/j.est.2020.101696

T. Phusittananan, W. Kao-Ian, M. T. Nguyen, T. Yonezawa, R. Pornprasertsuk, A.A. Mohamad, S. Kheawhom, Ethylene Glycol/Ethanol Anolyte for High-Capacity Alkaline Aluminum-Air Battery With Dual-Electrolyte Configuration, Frontiers on Energy Research 8 (2020) 189. https://doi.org/10.3389/fenrg.2020.00189

J. Ryu, H. Jang, J. Park, Y. Yoo, M. Park, J. Cho, Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries, Nature Communications 9 (2018) 3715. https://doi.org/10.1038/s41467-018-06211-3

S. H. Yang, H. Knickle, Modeling the performance of an aluminum-air cell, Journal of Power Sources 124 (2003) 572-585. https://doi.org/10.1016/S0378-7753(03)00811-5

S. Yang, W. Yang, G. Sun, H. Knickle, Secondary current density distribution analysis of an aluminum-air cell, Journal of Power Sources 161 (2006) 1412-1419. https://doi.org/10.1016/j.jpowsour.2006.04.143

D. Linden, T. B. Reddy (Eds.), Handbook of batteries, McGraw-Hill, 2002. ISBN 0-07-135978-8

D. M. F. Santos, C. A. C. Sequeira, J.L. Figueiredo, Hydrogen production by alkaline water electrolysis, Quimica Nova 36 (2013) 1176-1193. https://doi.org/10.1590/S0100-40422013000800017

R. J. Gilliam, J. W. Graydon, D. W. Kirk, S. J. Thorpe, A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures, International Journal of Hydrogen Energy 32 (2007) 359-364. https://doi.org/10.1016/j.ijhydene.2006.10.062

M. Iannuzzi, T. Young, G. S. Frankel, Aluminum Alloy Corrosion Inhibition by Vanadates, Journal of The Electrochemical Society 153 (2006) B533-B541. https://doi.org/10.1149/1.2358843

M. Iannuzzi, J. Kovac, G. S. Frankel, A study of the mechanisms of corrosion inhibition of AA2024-T3 by vanadates using the split cell technique, Electrochimica Acta 52 (2007) 4032-4042. https://doi.org/10.1016/j.electacta.2006.11.019

X. Y. Wang, J. M. Wang, Q. L. Wang, H. B. Shao, J. Q. Zhang, The effects of polyethylene glycol (PEG) as an electrolyte additive on the corrosion behavior and electrochemical performances of pure aluminum in an alkaline zincate solution, Materials and Corrosion 62 (2011) 1149-1152. https://doi.org/10.1002/maco.201005646

M. Rashvand Avei, M. Jafarian, H. Moghanni Bavil Olyaei, F. Gobal, S. M. Hosseini, M. G. Mahjani, Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries, Materials Chemistry and Physics 143 (2013) 133-142. https://doi.org/10.1016/j.matchemphys.2013.08.035

D. S. Kharitonov, J. Sommertune, C. Örnek, J. Ryl, I. I. Kurilo, P. M. Claesson, J. Pan, Corrosion inhibition of aluminium alloy AA6063-T5 by vanadates: Local surface chemical events elucidated by confocal Raman micro-spectroscopy, Corrosion Science 148 (2019) 237-250. https://doi.org/10.1016/j.corsci.2018.12.011

D. S. Kharitonov, C. Örnek, P. M. Claesson, J. Sommertune, I. M. Zharskii, I. I. Kurilo, J. Pan, Corrosion Inhibition of Aluminum Alloy AA6063-T5 by Vanadates: Microstructure Characterization and Corrosion Analysis, Journal of The Electrochemical Society 165 (2018) C116-C126. https://doi.org/10.1149/2.0341803jes

X. Li, J. Li, D. Zhang, L. Gao, J. Qu, T. Lin, Synergistic effect of 8-aminoquinoline and ZnO as hybrid additives in alkaline electrolyte for Al-air battery, Journal of Molecular Liquids 322 (2021) 114946. https://doi.org/10.1016/j.molliq.2020.114946

Published

14-11-2023 — Updated on 14-11-2023

How to Cite

Bolaños-Picado, D., Torres, C., & González-Flores, D. (2023). Primary aluminum-air flow battery for high-power applications: Optimization of power and self-discharge : Original scientific paper. Journal of Electrochemical Science and Engineering, 13(6), 895–909. https://doi.org/10.5599/jese.2075

Issue

Section

Batteries and supercapcitors