A simple, sensitive and cost-effective electrochemical sensor for the determination of N-acetylcysteine

Original scientific paper





Zeolitic imidazolate framework-67, Ionic liquid, carbon paste electrode, metal-organic framework, nanomaterials
Graphical Abstract


In the present work, we prepared a simple and novel electrochemical sensor based on zeolitic imidazolate framework-67 (ZIF-67) and ionic liquid 1-Butyl-3-methylimidazolium hexa­fluorophosphate (BMIM.PF6) modified carbon paste electrode (CPE), which was effectively used for the determination of N-acetylcysteine. The cyclic voltammetry studies demonstrated the lowest peak potential and the enhanced peak current response for N-acetyl­cysteine at the surface of ZIF-67/BMIM.PF6-modified CPE compared to the other CPEs due to the significant catalytic effect of ZIF-67 and BMIM.PF6, as well as the combination of them. Under the optimized conditions, the electrochemical response of ZIF-67/BMIM.PF6/CPE sensor provided a good linear relationship with N-acetylcysteine concentration from 0.04 to 435.0 µM. The limit of detection is estimated to be 0.01 μM for N-acetylcysteine. In further studies and measurements, the estimation of N-acetylcysteine in tablet samples confirms the usefulness of the ZIF-67/BMIM.PF6/CPE sensor.


Download data is not yet available.


S. Kiaie, C. Karami, A. Khodadadian, M. Taher, S. Soltanian, A facile method for detection of N-acetylcysteine and l-cysteine with silver nanoparticle in aqueous environments, Journal of Bioequivalence & Bioavailability 8 (2016) 197-203. http://dx.doi.org/10.4172/jbb.1000294

I. S. da Silva, M. F. A. Araújo, H. A. Ferreira, J. D. J. G. Varela Jr, S. M. C. N. Tanaka, A. A. Tanaka, L. Angnes, Quantification of N-acetylcysteine in pharmaceuticals using cobalt phthalocyanine modified graphite electrodes, Talanta 83 (2011) 1701-1706. https://doi.org/10.1016/j.talanta.2010.11.070

O. I. Aruoma, B. Halliwell, B. M. Hoey, J. Butler, The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid, Free Radical Biology and Medicine 6 (1989) 593-597. https://doi.org/10.1016/0891-5849(89)90066-X

M. Rudašová, M. Masár, Precise determination of N‐acetylcysteine in pharmaceuticals by microchip electrophoresis, Journal of Separation Science 39 (2016) 433-439. https://doi.org/10.1002/jssc.201501025

M. Roederer, S. W. Ela, F. J. Staal, L. A. Herzenberg, L. A. Herzenberg, N-acetylcysteine: a new approach to anti-HIV therapy, AIDS Research and Human Retroviruses 8 (1992) 209-217. https://doi.org/10.1089/aid.1992.8.209

A. Agarwal, U. Muñoz-Nájar, U. Klueh, S. C. Shih, K. P. Claffey, N-acetyl-cysteine promotes angiostatin production and vascular collapse in an orthotopic model of breast cancer, The American Journal of Pathology 164 (2004) 1683-1696. https://doi.org/10.1016/S0002-9440(10)63727-3

H. Ottenwälder, P. Simon, Differential effect of N-acetylcysteine on excretion of the metals Hg, Cd, Pb and Au, Archives of Toxicology 60 (1987) 401-402. https://doi.org/10.1007/BF00295763

A. F. Ourique, K. Coradini, P. dos Santos Chaves, S. C. Garcia, A. R. Pohlmann, S. S. Guterres, R. C. R. Beck, A LC-UV method to assay N-acetylcysteine without derivatization: analyses of pharmaceutical products, Analytical Methods 5 (2013) 3321-3327. https://doi.org/10.1039/C3AY40426A

P. Mitsopoulos, A. Omri, M. Alipour, N. Vermeulen, M. G. Smith, Z. E. Suntres, Effectiveness of liposomal-N-acetylcysteine against LPS-induced lung injuries in rodents, International Journal of Pharmaceutics 363 (2008) 106-111. https://doi.org/10.1016/j.ijpharm.2008.07.015

P. A. Lewis, A. J. Woodward, J. Maddock, Improved method for the determination of N-acetylcysteine in human plasma by high-performance liquid chromatography, Journal of Chromatography A 327 (1985) 261-267. https://doi.org/10.1016/S0021-9673(01)81655-1

C. Celma, J. A. Allue, J. Prunonosa, C. Peraire, R. Obach, Determination of N-acetylcysteine in human plasma by liquid chromatography coupled to tandem mass spectrometry, Journal of Chromatography A 870 (2000) 13-22. https://doi.org/10.1016/S0021-9673(99)01078-X

C. Lu, G. Liu, J. Jia, Y. Gui, Y. Liu, M. Zhang, C. Yu, Liquid chromatography tandem mass spectrometry method for determination of N‐acetylcysteine in human plasma using an isotope‐labeled internal standard, Biomedical Chromatography 25 (2011) 427-431. https://doi.org/10.1002/bmc.1465

H. B. Wang, H. D. Zhang, Y. Chen, L. J. Ou, Y. M. Liu, Poly (thymine)-templated fluorescent copper nanoparticles for label-free detection of N-acetylcysteine in pharmaceutical samples, Analytical Methods 7 (2015) 6372-6377. https://doi.org/10.1039/C5AY00841G

J. Giljanović, M. Brkljača, A. Prkić, Flow injection spectrophotometric determination of N-acetyl-L-cysteine as a complex with palladium (II), Molecules 16 (2011) 7224-7236. https://doi.org/10.3390/molecules16097224

G. P. McDermott, J. M. Terry, X. A. Conlan, N. W. Barnett, P. S. Francis, Direct detection of biologically significant thiols and disulfides with manganese (IV) chemiluminescence, Analytical Chemistry 83 (2011) 6034-6039. https://doi.org/10.1021/ac2010668

M. Jaworska, Z. Szulińska, M. Wilk, E. Anuszewska, Capillary electrophoresis for the determination of N-Acetyltyrosine and N-acetylcysteine in products for parenteral nutrition: Method development and comparison of two CE systems, Acta Chromatographica 23 (2011) 595-602. https://doi.org/10.1556/achrom.23.2011.4.5

Y. Wang, Q. Liu, Q. Qi, J. Ding, X. Gao, Y. Zhang, Y. Sun, Electrocatalytic oxidation and detection of N-acetylcysteine based on magnetite/reduced graphene oxide composite-modified glassy carbon electrode, Electrochimica Acta 111 (2013) 31-40. https://doi.org/10.1016/j.electacta.2013.08.010

S. Meenakshi, G. Kaladevi, K. Pandian, P. Wilson, Cobalt phthalocyanine tagged graphene nanoflakes for enhanced electrocatalytic detection of N-acetylcysteine by amperometry method, Ionics 24 (2018) 2807-2819. https://doi.org/10.1007/s11581-017-2410-5

D. R. do Carmo, M. S. Peixoto, A. dos Santos Felipe, A. S. B. Sales, N. L. D. Filho, M. de Souza Magossi, Synthesis of a New Zn2+/Fe3+ octa (aminopropyl) silsesquioxane cmplex and its voltammetric behavior towards N-acetylcysteine, Silicon 15 (2023) 683-697. https://doi.org/10.1007/s12633-022-02030-w

L. Zhang, J. Tang, J. Li, Y. Li, P. Yang, P. Zhao, Y. Xie, A novel dopamine electrochemical sensor based on 3D flake nickel oxide/cobalt oxide@porous carbon nanosheets/carbon nanotubes/electrochemical reduced of graphene oxide composites modified glassy carbon electrode, Colloids and Surfaces A: Physicochemical and Engineering Aspects 666 (2023) 131284. https://doi.org/10.1016/j.colsurfa.2023.131284

S. Tajik, Y. Orooji, F. Karimi, Z. Ghazanfari, H. Beitollahi, M. Shokouhimehr, H. W. Jang, High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth, Journal of Food Measurement and Characterization 15 (2021) 4617-4622. https://doi.org/10.1007/s11694-021-01027-0

H. Karimi-Maleh, R. Darabi, F. Karimi, C. Karaman, S. A. Shahidi, N. Zare, M. Baghayeri, L. Fu, S. Rostamnia, J. Rouhi, State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples, Environmental Research 222 (2023) 115338. https://doi.org/10.1016/j.envres.2023.115338

S. Duan, X. Wu, Z. Shu, A. Xiao, B. Chai, F. Pi, X. Liu, Curcumin-enhanced MOF electrochemical sensor for sensitive detection of methyl parathion in vegetables and fruits, Microchemical Journal 184 (2023) 108182. https://doi.org/10.1016/j.microc.2022.108182

H. Pyman, Design and fabrication of modified DNA-Gp nano-biocomposite electrode for industrial dye measurement and optical confirmation, Progress in Chemical and Biochemical Research 5 (2022) 391-405. https://doi.org/10.22034/pcbr.2022.367576.1236

F. Garkani Nejad, S. Tajik, H. Beitollahi, I. Sheikhshoaie, Magnetic nanomaterials based electrochemical (bio) sensors for food analysis, Talanta 228 (2021) 122075. https://doi.org/10.1016/j.talanta.2020.122075

H. Karimi-Maleh, Y. Liu, Z. Li, R. Darabi, Y. Orooji, C. Karaman, F. Karimi, M. Baghayeri, J. Rouhi, L. Fu, Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study, Chemosphere 332 (2023) 138815. https://doi.org/10.1016/j.chemosphere.2023.138815

M. Vardini, N. Abbasi, A. Kaviani, M. Ahmadi, E. Karimi, Graphite electrode potentiometric sensor modified by surface imprinted silica gel to measure valproic acid, Chemical Methodologies 6 (2022) 398-408. https://doi.org/10.22034/chemm.2022.328620.1437

R. S. Kumar, G. K. Jayaprakash, S. Manjappa, M. Kumar, A. P. Kumar, Theoretical and electrochemical analysis of L-serine modified graphite paste electrode for dopamine sensing applications in real samples, Journal of Electrochemical Science and Engineering 12 (2022) 1243-1250. https://doi.org/10.5599/jese.1390

L. Zhang, D. Qin, J. Feng, T. Tang, H. Cheng, Rapid quantitative detection of luteolin using an electrochemical sensor based on electrospinning of carbon nanofibers doped with single-walled carbon nanoangles, Analytical Methods 15 (2023) 3073-3083. https://doi.org/10.1039/D3AY00497J

H. Beitollahi, H. Mahmoudi Moghaddam, S. Tajik, Voltammetric determination of bisphenol A in water and juice using a lanthanum (III)-doped cobalt (II, III) nanocube modified carbon screen-printed electrode, Analytical Letters 52 (2019) 1432-1444. https://doi.org/10.1080/00032719.2018.1545132

S. Z. Mohammadi, F. Mousazadeh, M. Mohammadhasani-Pour, Electrochemical detection of folic acid using a modified screen printed electrode, Journal of Electrochemical Science and Engineering 12 (2022) 1111-1120. https://doi.org/10.5599/jese.1360

S. Cheraghi, M. A. Taher, H. Karimi-Maleh, F. Karimi, M. Shabani-Nooshabadi, M. Alizadeh, A. Al-Othman, N. Erk, P. K. Y. Raman, C. Karaman, Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids, Chemosphere 287 (2022) 132187. https://doi.org/10.1016/j.chemosphere.2021.132187

H. Roshanfekr, A simple specific dopamine aptasensor based on partially reduced graphene oxide–AuNPs composite, Progress in Chemical and Biochemical Research 6 (2023) 61-70. https://doi.org/10.22034/pcbr.2023.381280.1245

F. C. Barreto, M. K. L. da Silva, I. Cesarino, Copper nanoparticles and reduced graphene oxide as an electrode modifier for the development of an electrochemical sensing platform for chloroquine phosphate determination, Nanomaterials 13 (2023) 1436. https://doi.org/10.3390/nano13091436

F. Garkani Nejad, M. H. Asadi, I. Sheikhshoaie, Z. Dourandish, R. Zaimbashi, H. Beitollahi, Construction of modified screen-printed graphite electrode for the application in electrochemical detection of sunset yellow in food samples, Food and Chemical Toxicology 166 (2022) 113243. https://doi.org/10.1016/j.fct.2022.113243

Z. Zhang, H. Karimi-Maleh, In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids, Chemosphere 324 (2023) 138302. https://doi.org/10.1016/j.chemosphere.2023.138302

M. Ozdal, S. Gurkok, Recent advances in nanoparticles as antibacterial agent, ADMET and DMPK 10 (2022) 115-129. https://doi.org/10.5599/admet.1172

A. I. Arif, Biosynthesis of copper oxide nanoparticles using Aspergillus niger extract and their antibacterial and antioxidant activities, Eurasian Chemical Communications 5 (2023) 598-608. https://doi.org/10.22034/ecc.2023.384414.1600

B. Bonhoeffer, A. Kordikowski, E. John, M. Juhnke, Numerical modeling of the dissolution of drug nanocrystals and its application to industrial product development, ADMET and DMPK 10 (2022) 253-287. https://doi.org/10.5599/admet.1437

A. Hojjati-Najafabadi, M. Mansoorianfar, T. X. Liang, K. Shahin, H. Karimi-Maleh, A review on magnetic sensors for monitoring of hazardous pollutants in water resources, Science of The Total Environment 824 (2022) 153844. https://doi.org/10.1016/j.scitotenv.2022.153844

P. Shen, X. Zhang, N. Ding, Y. Zhou, C. Wu, C. Xing, Y. Kang, Glutathione and esterase dual-responsive smart nano-drug delivery system capable of breaking the redox balance for enhanced tumor therapy, ACS Applied Materials & Interfaces 15 (2023) 20697-20711. https://doi.org/10.1021/acsami.3c01155

O. K. Akeremale, Metal-organic frameworks (MOFs) as adsorbents for purification of dye-contaminated wastewater: a review, Journal of Chemical Reviews 4 (2022) 1-14. https://doi.org/10.22034/jcr.2022.314728.1130

H. Jiang, Y. Shi, S. Zang, Pd/PdO and hydrous RuO2 difunction-modified SiO2@ TaON@Ta3N5 nano-photocatalyst for efficient solar overall water splitting, International Journal of Hydrogen Energy 48 (2023) 17827-17837. https://doi.org/10.1016/j.ijhydene.2023.01.219

B. Baghernejad, M. Alikhani, Nano-cerium oxide/aluminum oxide as an efficient catalyst for the synthesis of xanthene derivatives as potential antiviral and anti-inflammatory agents, Journal of Applied Organometallic Chemistry 2 (2022) 140-147. https://doi.org/10.22034/jaoc.2022.154819

I. Alao, I. Oyekunle, K. Iwuozor, E. Emenike, Green synthesis of copper nanoparticles and investigation of its antimicrobial properties, Advanced Journal of Chemistry B 4 (2022) 39-52. https://doi.org/10.22034/ajcb.2022.323779.1106

C. Karaman, O. Karaman, P. L. Show, Y. Orooji, H. Karimi-Maleh, Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: equilibrium, kinetics, thermodynamics and artificial neural network modeling, Environmental Research 207 (2021) 112156. https://doi.org/10.1016/j.envres.2021.112156

D. Palke, Synthesis, physicochemical and biological studies of transition metal complexes of DHA schiff bases of aromatic amine, Journal of Applied Organometallic Chemistry 2 (2022) 81-88. https://doi.org/10.22034/jaoc.2022.349187.1055

M. Waqas, L. Yang, Y. Wei, Y. Sun, F. Yang, Y. Fan, W. Chen, Controlled fabrication of nickel and cerium mixed nano-oxides supported on carbon nanotubes for glucose monitoring, Electrochimica Acta 440 (2023) 141735. https://doi.org/10.1016/j.electacta.2022.141735

S. Tajik, H. Beitollahi, H. W. Jang, M. Shokouhimehr, A screen printed electrode modified with Fe3O4@polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine, Talanta 232 (2021) 122379. https://doi.org/10.1016/j.talanta.2021.122379

H. Karimi-Maleh, C. T. Fakude, N. Mabuba, G. M. Peleyeju, O. A. Arotiba, The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor, Journal of Colloid and Interface Science 554 (2019) 603-610. https://doi.org/10.1016/j.jcis.2019.07.047

S. Esfandiari Baghbamidi, H. Beitollahi, S. Z. Mohammadi, S. Tajik, S. Soltani-Nejad, V. Soltani-Nejad, Nanostructure-based electrochemical sensor for the voltammetric determination of benserazide, uric acid, and folic acid, Chinese Journal of Catalysis 34 (2013) 1869-1875. https://doi.org/10.1016/S1872-2067(12)60655-X

S. N. Zakiyyah, D. R. Eddy, Firdaus, M. L. Eddy, T. Subroto, Y. W. Hartati, Screen-printed carbon electrode/natural silica-ceria nanocomposite for electrochemical aptasensor application, Journal of Electrochemical Science and Engineering 12 (2022) 1225-1242. https://doi.org/10.5599/jese.1455

M. Asaduzzaman, M. A. Zahed, M. Sharifuzzaman, M. S. Reza, X. Hui, S. Sharma, J. Y. Park, A hybridized nano-porous carbon reinforced 3D graphene-based epidermal patch for precise sweat glucose and lactate analysis, Biosensors and Bioelectronics 219 (2023) 114846. https://doi.org/10.1016/j.bios.2022.114846

J. A. Buledi, N. Mahar, A. Mallah, A. R. Solangi, I. M. Palabiyik, N. Qambrani, F. Karimi, Y. Vasse¬ghian, H. Karimi-Maleh, Electrochemical quantification of mancozeb through tungsten oxide/ /reduced graphene oxide nanocomposite: A potential method for environmental remediation, Food and Chemical Toxicology 161 (2022) 112843. https://doi.org/10.1016/j.fct.2022.112843

F. Garkani Nejad, H. Beitollahi, I. Sheikhshoaie, A UiO-66-NH2 MOF/PAMAM dendrimer nanocomposite for electrochemical detection of tramadol in the presence of acetaminophen in pharmaceutical formulations, Biosensors 13 (2023) 514. https://doi.org/10.3390/bios13050514

R. Sahoo, S. Ghosh, S. Chand, S. C. Pal, T. Kuila, M. C. Das, Highly scalable and pH stable 2D Ni-MOF-based composites for high performance supercapacitor, Composites Part B 245 (2022) 110174. https://doi.org/10.1016/j.compositesb.2022.110174

A. Ahmad, S. Khan, S. Tariq, R. Luque, F. Verpoort, Self-sacrifice MOFs for heterogeneous catalysis: Synthesis mechanisms and future perspectives, Materials Today 55 (2022) 137-169. https://doi.org/10.1016/j.mattod.2022.04.002

C. R. Yang, P. W. Cheng, S. F. Tseng, Highly responsive and selective NO2 gas sensors based on titanium metal organic framework (Ti-MOF) with pyromellitic acid, Sensors and Actuators A 354 (2023) 114301. https://doi.org/10.1016/j.sna.2023.114301

H. Zeng, C. Xia, B. Zhao, M. Zhu, H. Zhang, D. Zhang, Y. Yuan, Folic acid–functionalized metal-organic framework nanoparticles as drug carriers improved bufalin antitumor activity against breast cancer, Frontiers in Pharmacology 12 (2022) 747992. https://doi.org/10.3389/fphar.2021.747992

M. Ahmad, K. A. Siddiqui, Synthesis of mixed ligand 3D cobalt MOF: Smart responsiveness towards photocatalytic dye degradation in environmental contaminants, Journal of Molecular Structure 1265 (2022) 133399. https://doi.org/10.1016/j.molstruc.2022.133399

Y. Ma, Y. Leng, D. Huo, D. Zhao, J. Zheng, H. Yang, C. Hou, A sensitive enzyme-free electrochemical sensor based on a rod-shaped bimetallic MOF anchored on graphene oxide nanosheets for determination of glucose in huangshui, Analytical Methods 15 (2023) 2417-2426. https://doi.org/10.1039/D2AY01977A

Z. Lu, K. Wei, H. Ma, R. Duan, M. Sun, P. Zou, H. Rao, Bimetallic MOF synergy molecularly imprinted ratiometric electrochemical sensor based on MXene decorated with polythionine for ultra-sensitive sensing of catechol, Analytica Chimica Acta 1251 (2023) 340983. https://doi.org/10.1016/j.aca.2023.340983

R. Sun, R. Lv, Y. Li, T. Du, L. Chen, Y. Zhang, Y. Qi, Simple and sensitive electrochemical detection of sunset yellow and Sudan I in food based on AuNPs/Zr-MOF-Graphene, Food Control 145 (2023) 109491. https://doi.org/10.1016/j.foodcont.2022.109491

P. Ranjan, M. Abubakar Sadique, S. Yadav, R. Khan, An electrochemical immunosensor based on gold-graphene oxide nanocomposites with ionic liquid for detecting the breast cancer CD44 biomarker, ACS Applied Materials & Interfaces 14 (2022) 20802-20812. https://doi.org/10.1021/acsami.2c03905

Q. Zhang, W. Cheng, D. Wu, Y. Yang, X. Feng, C. Gao, X. Tang, An electrochemical method for determination of amaranth in drinks using functionalized graphene oxide/chitosan/ionic liquid nanocomposite supported nanoporous gold, Food Chemistry 367 (2022) 130727. https://doi.org/10.1016/j.foodchem.2021.130727

M. A. Mohamed, N. N. Salama, M. A. Sultan, H. F. Manie, M. M. A. El-Alamin, Sensitive and effective electrochemical determination of butenafine in the presence of itraconazole using titanium nanoparticles-ionic liquid based nanocomposite sensor, Chemical Papers 77 (2023) 1929-1939. https://doi.org/10.1007/s11696-022-02593-3

K. Kunpatee, S. Traipop, O. Chailapakul, S. Chuanuwatanakul, Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode, Sensors and Actuators B 314 (2020) 128059. https://doi.org/10.1016/j.snb.2020.128059

S. Zhang, X. Zhuang, D. Chen, F. Luan, T. He, C. Tian, L. Chen, Simultaneous voltammetric determination of guanine and adenine using MnO2 nanosheets and ionic liquid-functionalized graphene combined with a permeation-selective polydopamine membrane, Microchimica Acta 186 (2019) 450. https://doi.org/10.1007/s00604-019-3577-4

V. A. Maraldi, Y. N. Colmenares, P. F. Pereira Barbosa, V. Mastelaro, D. Ribeiro do Carmo, Graphene Oxide as a Platform for Copper Pentacyanonitrosylferrate Nanoparticles and their Behavior in the Electro‐oxidation of N‐Acetylcysteine, Electroanalysis 32 (2020) 1408-1416. https://doi.org/10.1002/elan.201900493

A. C. de Sá, L. L. Paim, U. D. O. Bicalho, D. R. do Carmo, Determination of N-acetylcysteine by cyclic voltammetry using modified carbon paste electrode with copper nitroprusside adsorbed on the 3-aminopropylsilica, International Journal of Electrochemical Science 6 (2011) 3754-3767. http://hdl.handle.net/11449/10147

W. T. Suarez, L. H. Marcolino Jr, O. Fatibello-Filho, Voltammetric determination of N-acetylcysteine using a carbon paste electrode modified with copper (II) hexacyanoferrate (III), Microchemical Journal 82 (2006) 163-167. https://doi.org/10.1016/j.microc.2006.01.007

S. Shahrokhian, Z. Kamalzadeh, A. Bezaatpour, D. M. Boghaei, Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes. Sensors and Actuators B 133 (2008) 599-606. https://doi.org/10.1016/j.snb.2008.03.034



29-11-2023 — Updated on 29-11-2023

How to Cite

Mohammadzadeh Jahani, P., Tajik, S., & Garkani Najad, F. (2023). A simple, sensitive and cost-effective electrochemical sensor for the determination of N-acetylcysteine : Original scientific paper. Journal of Electrochemical Science and Engineering, 14(1), 61–73. https://doi.org/10.5599/jese.2039



Electroanalytical chemistry

Most read articles by the same author(s)