Synthesis, microstructure, and electrophysical properties of surface-modified polyantimonic acid nanoparticles
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2032Keywords:
nanoscale materials, core-shell particles, composite materials, impedance spectroscopy, proton conductivityAbstract
This work has considered the modern ideas on the mechanism of surface modification for used nanodispersed inorganic modifiers with an acidic surface, which significantly affect the hydrate and transport properties of polymeric proton-conducting electrolytes. Authors have proposed an alternative approach consisting of the synthesis of new composite nanoscale systems characterized by high ionic conductivity and developed a method for obtaining composite materials with "core-shell" structure based on an inorganic proton conductor (polyantimonic acid) modified with silicon oxide. The surface morphology of the synthesized nanoparticles has been studied by transmission electron microscopy, and their sizes have been determined. The data on frequency dependence of the electrical impedance are presented and the behavior of the active and reactive components of the impedance and conductivity in the frequency range from 100 Hz to 1 MHz has been analyzed. An equivalent electrical circuit simulating the impedance dispersion for obtained composites with "core-shell" structure based on PAA and SiO2 has been proposed.
Downloads
References
E. Yu. Safronova, A. B. Yaroslavtsev. Prospects of practical application of hybrid membra-nes, Petroleum Chemistry 56 (2016) 281-293. https://doi.org/10.1134/S0965544116040083
S. S. Ivanchev, S. V. Myakin. Polymer membranes for fuel cells: manufacture, structure, modification, properties, Russian Chemical Reviews 79(2) (2010) 101-117. https://doi.org/10.1070/RC2010v079n02ABEH004070
H. Strathmann, A. Grabowski, G. Eigenberger. Ion-Exchange Membranes in the Chemical Process Industry, Industrial & Engineering Chemistry Research 52 (2013) 10364. https://doi.org/10.1021/IE4002102
S. A. Novikova, G. Yu. Yurkov, A. B. Yaroslavtsev. Synthesis and transport properties of membrane materials with metal nanoparticles incorporated, Mendeleev Communications 20(2) (2010) 89-91. https://doi.org/10.1016/j.mencom.2010.03.008
I. A. Stenina, A. S. Shalimov, A. B. Yaroslavtsev. Ion transfer in hybrid inorganic/organic membranes, Polymers for Advanced Technologies 6 (2009) 566-570. https://doi.org/10.1002/pat.1384
E. Yu. Safronova, A. B. Yaroslavtsev. Nafion-type membranes doped with silica nanoparticles with modified surface, Solid State Ionics 221 (2012) 6-10. https://doi.org/10.1016/j.ssi.2012.05.030
V. Di Noto, N. Boaretto, E. Negro, G. Pace. New inorganic–organic proton conducting membranes based on Nafion and hydrophobic fluoroalkylated silica nanoparticles, Journal of Power Sources 195(23) (2010) 7734-7742. https://doi.org/10.1016/j.jpowsour.2009.10.028
E. Y. Safronova, I. A. Stenina, A. B. Yaroslavtsev. Synthesis and characterization of MF-4SK+SiO2 hybrid membranes modified with tungstophosphoric heteropolyacid, Russian Journal of Inorganic Chemistry 55(1) (2010) 13-17. https://doi.org/10.1134/S0036023610010031
K. Oh, O. Kwon, B. Son, D. H. Lee, S. Shanmugam. Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition, Journal of Membrane Science 583 (2019) 103-109. https://doi.org/10.1016/j.memsci.2019.04.031
E. Gerasimova, E. Safronova, A. Ukshe, Y. Dobrovolsky, A. Yaroslavtsev. Electrocatalytic and transport properties of hybrid Nafion membranes doped with silica and cesium acid salt of phosphotungstic acid in hydrogen fuel cells, Chemical Engineering Journal 305 (2016) 121-128. https://doi.org/10.1016/j.cej.2015.11.079
G. Xu, Z. Wei, S. Li, J. Li, Z. Yang, S. A. Grigoriev. In-situ sulfonation of targeted silica-filled Nafion for high-temperature PEM fuel cell application, International Journal of Hydrogen Energy 44(56) (2019) 29711-29716. https://doi.org/10.1016/j.ijhydene.2019.02.037
D. Cozzi, C. de Bonis, A. D’Epifanio, B. Mecheri, A. C. Tavares, S. Licoccia. Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications, Journal of Power Sources 248 (2014) 1127-1132. https://doi.org/10.1016/j.jpowsour.2013.10.070
D. V. Golubenko, R. R. Shaydullin, A. B. Yaroslavtsev. Improving the conductivity and permselectivity of ion-exchange membranes by introduction of inorganic oxide nanoparticles: impact of acid–base properties, Colloid and Polymer Science 297 (2019) 741-748. https://doi.org/10.1007/s00396-019-04499-1
P. A. Yurova, V. R. Malakhova, E. V. Gerasimova, I. A. Stenina, A. B. Yaroslavtsev. Nafion/Surface Modified Ceria Hybrid Membranes for Fuel Cell Application, Polymers 13(15) (2021) 2513. https://doi.org/10.3390/polym13152513
E. Bakangura, L. Wu, L. Ge, Z. Yang, T. Xu. Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives, Progress in Polymer Science 57 (2016) 103-152. https://doi.org/10.1016/j.progpolymsci.2015.11.004
C. Y. Wong, W. Y. Wong, K. Ramya, M. Khalid, K. S. Loh, W. R. W. Daud, A. A. H. Kadhum. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review, International Journal of Hydrogen Energy 44 (2019) 6116-6135. https://doi.org/10.1016/j.ijhydene.2019.01.084
D. J. Kim, M. J. Jo, S. Y. Nam. A review of polymer–nanocomposite electrolyte membranes for fuel cell application, Journal of Industrial and Engineering Chemistry 21 (2015) 36-52. https://doi.org/10.1016/j.jiec.2014.04.030
F. A. Belinskaya, E. A. Militsina. Inorganic Ion-exchange Materials Based on Insoluble Antimony(V) Compounds, Russian Chemical Reviews 49 (1980) 933-952. https://doi.org/10.1070/RC1980v049n10ABEH002518
V. P. Balykin, V. A. Burmistrov, O. A. Mezhenina. Structure and ion exchange properties of crystalline polyantimonic acid, Bulletin of the South Ural State University, series “Chemistry” 8(13) (2012) 43-48. https://vestnik.susu.ru/chemistry/article/view/1899 (in Russian)
F. A. Yaroshenko, V. A. Burmistrov. Synthesis of Hybrid Materials Based on MF-4SK Perfluorinated Sulfonated Cation-Exchange Membranes Modified with Polyantimonic Acid and Characterization of Their Proton Conductivity, Petroleum Chemistry 58(9) (2018) 770-773. https://doi.org/10.1134/S0965544118090116
D. A. Zakharyevich, A. S. Neustroev. Proton Conduction Through Interface Phase of CPAA/KDP Composites, MRS Proceedings 1256 (2010) 1642. https://doi.org/10.1557/PROC-1256-N16-42
L. Yu. Kovalenko, V. A. Burmistrov, Yu. A. Lupitskaya, F. A. Yaroshenko, E. M. Filonenko, E. A. Bulaeva. Ion exchange of H+/Na+ in polyantimonic acid, doped with vanadium ions, Pure and Applied Chemistry 92(3) (2020) 505-514. https://doi.org/10.3390/app112411877
T. Yu, Y. Shen, H. Zhang, S. Xu, H. Cao, G. Zheng. Efficient Removal of Bismuth with Supersoluble Amorphous Antimony Acids: An Insight into Synthesis Mechanism and Sb(V)-Bi(III) Interaction Behaviors, Chemical Engineering Journal 420 (2021) 127617. https://doi.org/10.1016/j.cej.2020.127617
Yu. A. Lupitskaya, F. A. Yaroshenko, E. M. Filonenko, O. A. Firsova. Structure and ion-exchange properties of tungsten-antimony crystalline acid and its substituted forms, Chelyabinsk Physical and Mathematical Journal 6(4) (2021) 485-496. https://doi.org/10.47475/2500-0101-2021-16408
O. Y. Kurapova, P. M. Faia, A. A. Zaripov, V. V. Pazheltsev, A. A. Glukharev, V. G Konakov. Electrochemical Characterization of Novel Polyantimonic-Acid-Based Proton Conductors for Low- and Intermediate-Temperature Fuel Cells, Applied Sciences 11 (2021) 11877. https://doi.org/10.3390/app112411877
S. Mendes, O. Kurapova, P. Faia. Enhancing Polyantimonic-Based Materials Moisture Response with Binder Content Tuning, Chemosensors 11 (2023) 423. https://doi.org/10.3390/chemosensors11080423
S. Mendes, O. Kurapova, P. Faia, V. Pazheltsev, A. Zaripov, V. Konakov. Polyantimonic Acid-Based Materials Evaluated as Moisture Sensors at Ambient Temperature, Journal of Solid State Electrochemistry 27 (2023) 611-625. https://doi.org/10.1007/s10008-022-05352-2
Y. Chen, Y. Pei, Z. Jiang, Z. Shi, J. Xu, D. Wu, T. Xu, Y. Tian, X. Wang, X. Li. Humidity Sensing Properties of the Hydrothermally Synthesized WS2-Modified SnO2 Hybrid Nanocomposite, Applied Surface Science 447 (2018) 325-330. https://doi.org/10.1016/j.apsusc.2018.03.154
H. Dai, N. Feng, J. Li, J. Zhang, W. Li. Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film, Sensors and Actuators B 283 (2020) 786-792. https://doi.org/10.1016/j.snb.2018.12.056
O. Y. Kurapova, A. A. Zaripov, V. V. Pazheltsev, A. G. Glukharev, V. G. Konakov. Bulk solid state polyantimonic acid based proton conducting membranes. Novye Ogneupory (New Refractories) 2 (2022) 45-50. https://newogneup.elpub.ru/jour/article/view/1731 (in Russian)
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Russian Science Foundation
Grant numbers 23-23-00140