Fe3O4 nanoparticles decorated reduced graphene oxide and carbon nanotubes-based composite for sensitive detection of imatinib in plasma and urine

Original scientific paper





Magnetite/carbon nanocomposite, electrochemical sensor, imatinib drug, real samples
Graphical Abstract


In this study, a new reduced graphene oxide (rGO) has been synthesized via a facile and envi­ronmentally friendly process using Callicarpa maingayi leaf extract. A novel magnetic catalyst based on Fe3O4 nanoparticles-reduced graphene oxide&carbon nanotubes ((Fe3O4-(rGO&CNT)) was prepared and characterized by hydrothermal method. The Fe3O4 nanoparticles with an average size of 25 to 40 nm were placed on carbon nanotubes and reduced graphene oxide sheets, while carbon nanotubes inserted between the reduced graphene oxide sheets effectively prevented their aggregation. The (Fe3O4-(rGO&CNT) composite has a large surface area and good electrocatalytic properties, suiting for the detection and determination of imatinib (IM) anticancer drug by voltammetry method. Under opti­mi­zed conditions, good linearity was achieved in the concentration range of 0.1 to 40 μmol L-1 and the limit of detection and sensitivity were 57 nmol L-1 and 3.365 μA μM-1, respectively. Furthermore, the fabricated sensor demonstrated acceptable reproducible behaviour and accuracy and a high level of stability during all electrochemical tests. In addition, the proposed method was applied for the detection of IM in biological samples and the recoveries were 94.0 to 98.5 %, with relative standard deviations of 2.1 to 4.4 %.  


Download data is not yet available.


Y. Liu, M. Wei, Y. Hu, L. Zhu, J. Du, An electrochemical sensor based on a molecularly imprinted polymer for determination of anticancer drug Mitoxantrone, Sensors and Actuators B 255 (2018) 544-551. https://doi.org/10.1016/j.snb.2017.08.023

M. Muti, M. Muti, Electrochemical monitoring of the interaction between anticancer drug and DNA in the presence of antioxidant, Talanta 178 (2018) 1033-1039. https://doi.org/10.1016/j.talanta.2017.08.089

K. N. Cahill, H. R. Katz, J. Cui, J. Lai, Sh. Kazani, A. Crosby-Thompson, D. Garofalo, M. Castro, N. Jarjour, E. DiMango, S. Erzurum, J. Trevor, K. Shenoy, V. M. Chinchilli, M. E. Wechsler, T. M. Laidlaw, J. A. Boyce, E. Israel, KIT inhibition by imatinib in patients with severe refractory asthma, The New England Journal of Medicine 376 (2017) 1911-1920. https://doi.org/10.1056/NEJMoa1613125

P. Sobierajska, A. Serwotka-Suszczak, D. Szymanski, K. Marycz, R. J. Wiglusz, Nanohydroxyapatite-mediated imatinib delivery for specific anticancer applications, Molecules 25 (2020) 4602. https://doi.org/10.3390/molecules25204602

A. Hochhaus, R. A. Larson, F. Guilhot, J. P. Radich, S. Branford, T. P. Hughes, M. Baccarani, M. W. Deininger, F. Cervantes, S. Fujihara, Ch. E. Ortmann, H. D. Menssen, H. Kantarjian, S. G. O’Brien, B. J. Druker, Long-term outcomes of imatinib treatment for chronic myeloid leukemia, The New England Journal of Medicine 376 (2017) 917-927. https://doi.org/10.1056/NEJMoa1609324

M. A. Babaei, B. Kamalidehghan, M. Saleem, H. Z. Huri, F. Ahmadipour, Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells, Drug Design Development Therapy 10 (2016) 2443-2459. https://doi.org/10.2147/DDDT.S89114

Q. Jiao, L. Bi, Y. Ren, S. Song, Q. Wang, Y. S. Wang, Advances in studies of tyrosine kinase inhibitors and their acquired resistance, Molecular Cancer 17 (2018) 36. https://doi.org/10.1186/s12943-018-0801-5

I. Grante, A. Actins, L. Orola, Protonation effects on the UV/Vis absorption spectra of imatinib: A theoretical and experimental study, Spectrochimica Acta: Molecular and Biomolecular Spectroscopy 129 (2014) 326-332. https://doi.org/10.1016/j.saa.2014.03.059

O. Roth, O. Spreux-Varoquaux, S. Bouchet, P. Rousselot, S. Castaigne, S. Rigaudeau, V. Raggueneau, P. Therond, P. Devillier, M. Molimard, B. Meneglier, Imatinib assay by HPLC with photodiode-array UV detection in plasma from patients with chronic myeloid leukemia: Comparison with LC-MS/MS, Clinica Chimica Acta 411 (2010) 140-146. https://doi.org/10.1016/j.cca.2009.10.007

G. Bende, S. Kollipara, V. Sekar, R. Saha, UV-spectrophotometric determination of imatinib mesylate and its application in solubility studies, Pharmazie 63 (2008) 641-645. https://doi.org/10.1691/ph.2008.8094

J. Rodríguez-Flores, J. B. Nevado, A. C. Salcedo, M. P. Cabello Díaz, Nonaqueous capillary elec¬trophoresis method for the analysis of gleevec and its main metabolite in human urine, Journal of Chromatography A 1068 (2005) 175-182. https://doi.org/10.1016/j.chroma.2004.09.089

O. S. Ahmed, M. Malý, Y. Ladner, L. Philibert, P. Dubský, C. Perrin, Influence of salt and acetonitrile on the capillary zone electrophoresis analysis of imatinib in plasma samples, Electrophoresis 40 (2019) 2810-2819. https://doi.org/10.1002/elps.201900188

J. Rodríguez, G. Castañeda, I. Lizcano, Electrochemical sensor for leukemia drug imatinib determination in urine by adsorptive striping square wave voltammetry using modified screen-printed electrodes, Electrochimica Acta 269 (2018) 668-675. https://doi.org/10.1016/j.electacta.2018.03.051

J. G. Manjunatha, Electroanalysis of estriol hormone using electrochemical sensor, Sensing and Bio-Sensing Research 16 (2017) 79-84. https://doi.org/10.1016/j.sbsr.2017.11.006

J. G. Manjunatha, Poly (Nigrosine) Modified Electrochemical Sensor for the Determination of Dopamine and Uric acid: A Cyclic Voltammetric Study, International Journal of ChemTech Research 9 (2016) 136-146. https://sphinxsai.com/2016/ch_vol9_no2/1/(136-146)V9N2CT.pdf

M. Baladi, H. Teymourini, E. A. Dawi, M. Amiri, A. Ramazani, M. Salavati-Niasari, Electrochemical determination of imatinib mesylate using TbFeO3/g-C3N4 nanocomposite modified glassy carbon electrode, Arabian Journal of Chemistry 16 (2023) 104963. https://doi.org/10.1016/j.arabjc.2023.104963

J. G. Manjunatha, Electrochemical polymerised graphene paste electrode and application to catechol sensing, The Open Chemical Engineering Journal 13 (2019) 81-87. https://doi.org/10.2174/1874123101913010081

G. Tigari, J. G. Manjunatha, Optimized voltammetric experiment for the determination of phloroglucinol at surfactant modified carbon nanotube paste electrode, Instruments and Experimental Techniques 63 (2020) 750-757. https://doi.org/10.1134/S0020441220050139

A. U. Alam, D. Clyne, H. Jin, N. X. Hu, M. J. Deen, ACS Sensors 5 (2020) 412-422. https://doi.org/10.1021/acssensors.9b02095

S. Morais, Advances and applications of carbon nanotubes, Nanomaterials 13 (2023) 2674. https://doi.org/10.3390/nano13192674

A. Hosseini Fakhrabad, R. Sanavi Khoshnood, M. R. Abedib, M. Ebrahimi, Fabrication a composite carbon paste electrodes (CPEs) modified with multi-wall carbon nanotubes (MWCNTs/N, N-Bis (salicyliden)-1,3- propandiamine) for determination of lanthanum (III), Eurasian Chemical Communications 3 (2021) 627-634. https://www.echemcom.com/article_134775_efa87e18e1e4daddba676005d78a6feb.pdf

A. B. Monnappa, J. G. Manjunatha, A. Sripathi Bhatt, H. Nagarajappa, Sensitive and selective electrochemical detection of vanillin at graphene based poly (methyl orange) modified electrode, Journal of Science: Advanced Materials and Devices 6 (2021) 415-424. https://doi.org/10.1016/j.jsamd.2021.05.002

Ch. Zou, J. Hu, Y. Su, F. Shao, Z. Tao, T. Huo, Zh. Zhou, N. Hu, Zh. Yang, E. Siu-Wai Kong, Y. Zhang, Three-dimensional Fe3O4@reduced graphene oxide heterojunctions for high-performance room-temperature NO2 sensors, Frontiers in Materials 6 (2019) 195. https://doi.org/10.3389/fmats.2019.00195

G. J. Rani, K. J. Babu, M. J. Rajan, Watsonia meriana flower like Fe3O4/reduced graphene oxide nanocomposite for the highly sensitive and selective electrochemical sensing of dopamine, Journal of Alloys and Compounds 688 (2016) 500-512. https://doi.org/10.1016/j.jallcom.2016.07.101

E. Aliyev, V. Filiz, M. M. Khan, Y. J. Lee, C. Abetz, V. Abetz, Structural characterization of graphene oxide: surface functional groups and fractionated oxidative debris, Nanomaterials 9 (2019) 1180. https://doi.org/10.3390/nano9081180

E. Vatandost, A, Ghorbani-HasanSaraei, F. Chekin, Sh. Naghizadeh Raeisi, S. A. Shahidi, Green tea extract assisted green synthesis of reduced graphene oxide: Application for highly sensitive electrochemical detection of sunset yellow in food products, Food Chemistry X 6 (2020) 100085-100090. https://doi.org/10.1016/j.fochx.2020.100085

N. Hazhir, F. Chekin, J. B. Raoof, Sh. Fathi, A porous reduced graphene oxide/chitosan-based nanocarrier as a delivery system of doxorubicin, RSC Advances 9 (2019) 30729-30735. https://doi.org/10.1039/C9RA04977K

A. Negi, K. Dobhal, P. Ghildiyal, Antioxidant potential and effect of extraction solvent on total Phenol content, flavonoids, International Journal of Pharmaceutical Sciences Review and Research 49 (2018) 19-24. https://doi.org/10.13140/RG.2.2.14158.15687

Sh. Nikkhah, H. Tahermansouri, F. Chekin, Synthesis, characterization, and electrochemical properties of the modified graphene oxide with 4,4′-methylenedianiline, Materials Letters 211 (2018) 323-327. https://doi.org/10.1016/j.matlet.2017.10.037

B. Zareyy, F. Chekin, Sh. Fathi, NiO/porous reduced graphene oxide as active hybrid electrocatalyst for oxygen evolution reaction, Russian Journal of Electrochemistry 55 (2019) 333-338. https://doi.org/10.1134/S102319351903011X

L. Shen, J. Dong, B. Wen, X. Wen, J. Li, Facile synthesis of hollow Fe3O4-rGO nanocomposites for the electrochemical detection of acetaminophen, Nanomaterials 13 (2023) 707. https://doi.org/10.3390/nano13040707

B. Davarnia, S. A. Shahidi, H. Karimi-Maleh, A. Ghorbani HasanSaraei, F. Karimi, Biosynthesis of Ag nanoparticle by peganum harmala extract; antimicrobial activity and ability for fabrication of quercetin food electrochemical sensor, International Journal of Electrochemical Science 15 (2020) 2549-2560. https://doi.org/10.20964/2020.03.70

H. Chen, K. Luo, K. Li, A facile electrochemical sensor based on NiO-ZnO/MWCNT-COOH modified GCE for simultaneous quantification of imatinib and itraconazole, Journal of The Electrochemical Society 166 (2019) B697-B707. https://doi.org/10.1149/2.1071908jes

N. Rezvani Jalal, T. Madrakian, A. Afkhami, A. Ghoorchian, In situ growth of metal–organic framework HKUST-1 on graphene oxide nanoribbons with high electrochemical sensing Performance in imatinib determination, ACS Applied Materials & Interfaces 12 (2020) 4859-4869. https://doi.org/10.1021/acsami.9b18097

Z. Wu, J. Liu, M. Liang, H. Zheng, Ch. Zhu, Y. Wang, Detection of imatinib based on electrochemical sensor constructed using biosynthesized graphene-silver nanocomposite, Frontiers in Chemistry 9 (2021) 670074. https://doi.org/10.3389/fchem.2021.670074

B. H. Pour, N. Haghnazari, F. Keshavarzi, E. Ahmadi, B. R. Zarif, High sensitive electrochemical sensor for imatinib based on metal-organic frameworks and multiwall carbon nanotubes nanocomposite, Microchemical Journal 165 (2021) 106147. https://doi.org/10.1016/j.microc.2021.106147


20-12-2023 — Updated on 09-04-2024

How to Cite

Naderi, N., Sabeti, B., & Chekin, F. (2024). Fe3O4 nanoparticles decorated reduced graphene oxide and carbon nanotubes-based composite for sensitive detection of imatinib in plasma and urine: Original scientific paper. Journal of Electrochemical Science and Engineering, 14(2), 119–133. https://doi.org/10.5599/jese.2145



Electroanalytical chemistry