Electrochemical evaluations of reduced graphene oxide for efficient counter electrode in dye-sensitized solar cell
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1977Keywords:
Carbon nanomaterials, redox electrolyte, defect density, environmentally friendly synthesis, electrochemical performanceAbstract
The design and development of an alternative counter electrode (CE) using graphene-based low-cost material for the dye-sensitized solar cell (DSSC) is the major motivation of the current research to replace the traditional platinum counter electrode. Herein, we prepared reduced graphene oxide (rGO) and investigated it for an efficient CE in DSSC. The structural and morphological properties of rGO are analyzed using FESEM, TEM and Raman techniques. The performance of I3- reduction on the CE is characterized by the EIS Nyquist plot, cyclic voltammetry, and the Tafel curve. The measured electrochemical results suggested that rGO CE has a lower charge transfer resistance (Rct), higher cathodic current density (Jrd), and higher Tafel slope as compared to graphene oxide (GO) CE, revealing that rGO CE has good catalytic activity towards the I3- reduction.
Downloads
References
R. Bajpai, S. Roy, N. Koratkar, D. S. Misra, NiO nanoparticles deposited on graphene platelets as a cost-effective counter electrode in a dye sensitized solar cell, Carbon 56 (2013) 56-63. https://doi.org/10.1016/j.carbon.2012.12.087
M. K. Nazeeruddin, E. Baranoff, M. Grätzel, Dye-sensitized solar cells: A brief overview, Solar Energy 85 (2011) 1172-1178. https://doi.org/10.1016/j.solener.2011.01.018
K. Rokesh, A. Pandikumar, K. Jothivenkatachalam, Dye sensitized solar cell: A summary, Materials Science Forum 771 (2014) 1-24. https://doi.org/10.4028/www.scientific.net/MSF.771.1
T. N. Murakami, M. Grätzel, Counter electrodes for DSC: Application of functional materials as catalysts, Inorganica Chimica Acta 361 (2008) 572-580. https://doi.org/10.1016/j.ica.2007.09.025
A. Dubey, S. Dave, M. Lakhani, A. Sharma, Applications of graphene for communication, electronics and medical fields, 2016 International Conference on Electrical, Electronics, and Optimization Techniques, (ICEEOT) (2016) 2435-2439. https://doi.org/10.1109/ICEEOT.2016.7755131
A. P. A. Raju, Production and Applications of Graphene and Its Composites, Doctoral Thesis, The University of Manchester (2015). https://pure.manchester.ac.uk/ws/portalfiles/portal/61846537/FULL_TEXT.PDF
V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, Graphene based materials: Past, present and future, Progress in Materials Science 56 (2011) 1178-1271. https://doi.org/10.1016/j.pmatsci.2011.03.003
J. Li, X. Zeng, T. Ren, E. Van der Heide, The Preparation of Graphene Oxide and Its Derivatives and Their Application in Bio-Tribological Systems, Lubricants 2 (2014) 137-161. https://doi.org/10.3390/lubricants2030137
S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, M. Mishra, Graphene and graphene oxide as nanomaterials for medicine and biology application, Journal of Nanostructure in Chemistry 8 (2018) 123-137. https://doi.org/10.1007/s40097-018-0265-6
V. Sharma, Y. Jain, M. Kumari, R. Gupta, S. K. Sharma, K. Sachdev, Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application, Macromolecular Symposia 376 (2017) 1700006. https://doi.org/10.1002/masy.201700006
D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology 3 (2008) 101-105. https://doi.org/10.1038/nnano.2007.451
A. Kommu, J. K. Singh, A review on graphene-based materials for removal of toxic pollutants from wastewater, Soft Materials 18 (2020) 297-322. https://doi.org/10.1080/1539445X.2020.1739710
Y. Liu, C. Chen, L. Liu, G. Zhu, Q. Kong, R. Hao, W. Tan, Rheological behavior of high concentrated dispersions of graphite oxide, Soft Materials 13 (2015) 167-175. https://doi.org/10.1080/1539445X.2015.1055004
H. Kumar, R. Sharma, A. Yadav, R. Kumari, Recent advancement made in the field of reduced graphene oxide-based nanocomposites used in the energy storage devices: A review, Journal of Energy Storage 33 (2021) 102032. https://doi.org/10.1016/j.est.2020.102032
S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T, Naguyen, R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034
M. S. Khan, R. Yadav, R. Vyas, A. Sharma, M. K. Banerjee, K. Sachdev, Synthesis and evaluation of reduced graphene oxide for supercapacitor application, Materials Today: Proceedings 30(1) (2020) 153-156. https://doi.org/10.1016/j.matpr.2020.05.403
G. Hou, J. Gao, J. Xie, B. Li, Preparation and properties characterization of gallic acid epoxy resin/succinic anhydride bionanocomposites modified by green reduced graphene oxide, Soft Materials 14 (2016) 27-37. https://doi.org/10.1080/1539445X.2015.1098704
C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Atomic Structure of Reduced Graphene Oxide, Nano Letters 10 (2010) 1144-1148. https://doi.org/10.1021/nl9031617
S. Joshi, R. Siddiqui, P. Sharma, R. Kumar, G. Verma, A. Saini, Green synthesis of peptide functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity, Scientific Reports 10 (2020) 9441. https://doi.org/10.1038/s41598-020-66230-3
E. Vatandost, A. Ghorbani-HasanSaraei, F. Chekin, S. Naghizadeh Raeisi, S.A. Shahidi, Green tea extract assisted green synthesis of reduced graphene oxide: Application for highly sensitive electrochemical detection of sunset yellow in food products, Food Chemistry: X 6 (2020) 100085. https://doi.org/10.1016/j.fochx.2020.100085
G. Calderón-Ayala, M. Cortez-Valadez, P. G. Mani-Gonzalez, R. B. Hurtado, J. I. Contreras-Rascón, R. C. Carrillo-Torres, M. E. Zayas, S. J. Castillo, A. R. Hernández-Martínez, M. Flores-Acosta, Green synthesis of reduced graphene oxide using ball milling, Carbon Letters 21 (2017) 93-97. https://doi.org/10.5714/CL.2017.21.093
P. Chettri, V. S. Vendamani, A. Tripathi, A.P. Pathak, A. Tiwari, Self-assembly of functionalised graphene nanostructures by one step reduction of graphene oxide using aqueous extract of Artemisia vulgaris, Applied Surface Science 362 (2016) 221-229. https://doi.org/10.1016/j.apsusc.2015.11.231
L. Gan, B. Li, Y. Chen, B. Yu, Z. Chen, Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: A waste-to-resource supply chain, Chemosphere 219 (2019) 148-154. https://doi.org/10.1016/j.chemosphere.2018.11.181
D. Jhankal, M. Saquib, K. K. Jhankal, K. Sachdev, Charge storage kinetics of MoS2 flower deco¬rated reduced graphene oxide for quasi solid-state symmetric supercapacitor, Journal of Physics and Chemistry of Solids 173 (2023) 111117. https://doi.org/10.1016/j.jpcs.2022.111117
P. Gu, D. Yang, X. Zhu, H. Sun, P. Wangyang, J. Li, H. Tian, Influence of electrolyte proportion on the performance of dye-sensitized solar cells, AIP Advances 7 (2017) 105219. https://doi.org/10.1063/1.5000564
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers, Physical Reviews Letters 97 (2006) 187401. https://doi.org/10.1103/PhysRevLett.97.187401
S. Sarker, K.-S. Lee, H. W. Seo, Y.-K. Jin, D. M. Kim, Reduced graphene oxide for Pt-free counter electrodes of dye-sensitized solar cells, Solar Energy 158 (2017) 42-48. https://doi.org/10.1016/j.solener.2017.09.029
B. Zhu, H. Li, Y. Chen, H. Liu, Facile synthesis and high volumetric capacitance of holey graphene film for supercapacitor electrodes with optimizing preparation conditions, Soft Materials 20 (2022) 137-148. https://doi.org/10.1080/1539445X.2021.1928703
A. Kaushal, S. K. Dhawan, V. Singh, Determination of crystallite size, number of graphene layers and defect density of graphene oxide (GO) and reduced graphene oxide (RGO), AIP Conference Proceedings 2115 (2019) 030106. https://doi.org/10.1063/1.5112945
M. Sharma, S. Rani, D. K. Pathak, R. Bhatia, R. Kumar, I. Sameera, Temperature dependent Raman modes of reduced graphene oxide: Effect of anharmonicity, crystallite size and defects, Carbon 184 (2021) 437-444. https://doi.org/10.1016/j.carbon.2021.08.014
N. P. D. Ngidi, M. A. Ollengo, V. O. Nyamori, Effect of doping temperatures and nitrogen precursors on the physicochemical, optical, and electrical conductivity properties of nitrogen-doped reduced graphene oxide, Materials 12 (2019) 3376. https://doi.org/10.3390/ma12203376
Z. Wang, P. Li, Y. Chen, J. He, J. Liu, W. Zhang, Y. Li, Phosphorus-doped reduced graphene oxide as an electrocatalyst counter electrode in dye-sensitized solar cells, Journal of Power Sources 263 (2014) 246-251. https://doi.org/10.1016/j.jpowsour.2014.03.118
F. Yu, Y. Shi, W. Yao, S. Han, J. Ma, A new breakthrough for graphene/carbon nanotubes as counter electrodes of dye-sensitized solar cells with up to a 10.69 % power conversion efficiency, Journal of Power Sources 412 (2019) 366-373. https://doi.org/10.1016/j.jpowsour.2018.11.066
G. Yue, J.-Y. Lin, S.-Y. Tai, Y. Xiao, J. Wu, A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells, Electrochimca Acta 85 (2012) 162-168. https://doi.org/10.1016/j.electacta.2012.08.040
A. Sarkar, A. K. Chakraborty, S. Bera, NiS/rGO nanohybrid: An excellent counter electrode for dye sensitized solar cell, Solar Energy Materials and Solar Cells 182 (2018) 314-320. https://doi.org/10.1016/j.solmat.2018.03.026
J. Zhao, J. Ma, X. Nan, B. Tang, Application of non-covalent functionalized carbon nanotubes for the counter electrode of dye-sensitized solar cells, Organic Electronics 30 (2016) 52-59. https://doi.org/10.1016/j.orgel.2015.11.032
Q. Wang, J. E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells, The Journal of Physical Chemistry B 109 (2005) 14945-14953. https://doi.org/10.1021/jp052768h
T. Shen, J. Tian, L. Lv, C. Fei, Y. Wang, T. Pullerits, G. Cao, Investigation of the role of Mn dopant in CdS quantum dot sensitized solar cell, Electrochimica Acta 191 (2016) 62-69. https://doi.org/10.1016/j.electacta.2016.01.056
U. Mehmood, N. A. Karim, H. F. Zahid, T. Asif, M. Younas, Polyaniline/graphene nano¬com-posites as counter electrode materials for platinum free dye-sensitized solar cells (DSSCSs), Materials Letters 256 (2019) 126651. https://doi.org/10.1016/j.matlet.2019.126651
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.