Electrocatalytic response of nitrogen-doped hollow carbon spheres modified glassy carbon electrode for sulphite detection in water

Original scientific paper

Authors

  • Ashkan Basande Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran https://orcid.org/0009-0008-8921-5046
  • Hadi Beitollahi Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran https://orcid.org/0000-0002-0669-5216

DOI:

https://doi.org/10.5599/jese.1966

Keywords:

Electrochemical sensing, electroanalysis, modified electrodes
Graphical Abstract

Abstract

In this work, the glassy carbon electrode (GCE) surface was modified with nitrogen-doped hollow carbon spheres (N-HCSs) to achieve a new electrochemical  sulphite sensor (N-HCSs/GCE) in water samples. The N-HCSs were explored for electrocatalytic behavior through voltammetric approaches using a routine three-electrode system. The findings revealed an admirable efficiency for modified electrodes towards  sulphite oxidation, highlighting the effectiveness of our as-produced  sulphite sensor. The differential pulse voltammetry was utilized under obtained optimal circumstances to study the as-developed sensor, the results of which underlined linear electrochemical current in relation to  sulphite concentration, with dynamic range as wide as 1.0-100.0 μM and limit of detection as narrow as 0.35 μM. Moreover, N-HCSs/GCE had commendable practical applicability for sensing sulphite present in real specimens with voltammetric techniques.

Downloads

Download data is not yet available.

References

Experimental Allergy 39 (2009) 1643-1651. https://doi.org/10.1111/j.1365-2222.2009.03362.x

E. M. Silva, R. M. Takeuchi, A. L. Santos, Carbon nanotubes for voltammetric determination of sulphite in some beverages, Food Chemistry 173 (2015) 763-769. https://doi.org/10.1016/j.foodchem.2014.10.106

C. S. Pundir, R. Rawal, Determination of sulfite with emphasis on biosensing methods: a review, Analytical and Bioanalytical Chemistry 405 (2013) 3049-3062. https://doi.org/10.1007/s00216-013-6753-0

W. A. Adeosun, A. M. Asiri, H. M. Marwani, Fabrication of conductive polypyrrole doped chitosan thin film for sensitive detection of sulfite in real food and biological samples, Electroanalysis 32 (2020) 1725-1736. https://doi.org/10.1002/elan.201900765

P. Manusha, S. Senthilkumar, Design and synthesis of phenothiazine based imidazolium ionic liquid for electrochemical nonenzymatic detection of sulfite in food samples, Journal of Molecular Liquids 301 (2020) 112412. https://doi.org/10.1016/j.molliq.2019.112412

M. Y. Guo, L. G. Wei, J. W. Shen, X. J. Liu, M. Abbas, Y. S. Yang, H. L. Zhu, A fluorescent probe derived from benzofuranone for turn-on detection of sulfite in living cells and mice, Dyes and Pigments 202 (2022) 110261. https://doi.org/10.1016/j.dyepig.2022.110261

M. Zhang, Y. Yang, W. Guo, Electrochemical sensor for sensitive nitrite and sulfite detection in milk based on acid-treated Fe3O4@SiO2 nanoparticles, Food Chemistry 403 (2023) 137004. https://doi.org/10.1016/j.foodchem.2023.137004

S. S. Hassan, M. S. Hamza, A. H. Mohamed, A novel spectrophotometric method for batch and flow injection determination of sulfite in beverages, Analytica Chimica Acta 570 (2006) 232-239. https://doi.org/10.1016/j.aca.2006.04.030

L. Yang, G. Hu, Y. Huang, C. Wang, X. Liu, C. Lu, G. Ma, Simple and sensitive determination of sulfites in Chinese herbal teas by ultrahigh-performance liquid chromatography tandem mass spectrometry, Analytical Methods 14 (2022) 2849-2856. https://doi.org/10.1039/D2AY00759B

P. D. Tzanavaras, E. Thiakouli, D. G. Themelis, Hybrid sequential injection–flow injection manifold for the spectrophotometric determination of total sulfite in wines using o-phthalaldehyde and gas-diffusion, Talanta 77 (2009) 1614-1619. https://doi.org/10.1016/j.talanta.2008.09.051

X. Su, W. Wei, Flow injection determination of sulfite in wines and fruit juices by using a bulk acoustic wave impedance sensor coupled to a membrane separation technique, Analyst 123 (1998) 221-224. https://doi.org/10.1039/A706727E

G. Jankovskiene, Z. Daunoravicius, A. Padarauskas, Capillary electrophoretic determination of sulfite using the zone-passing technique of in-capillary derivatization, Journal of Chromatography A 934 (2001) 67-73.‏ https://doi.org/10.1016/S0021-9673(01)01295-x

R. T. Massah, T. J. M. M. Ntep, E. Njanja, S. L. Z. Jiokeng, J. Liang, C. Janiak, I. K. Tonle, A metal-organic framework-based amperometric sensor for the sensitive determination of sulfite ions in the presence of ascorbic acid, Microchemical Journal 169 (2021) 106569. https://doi.org/10.1016/j.microc.2021.106569

K. Pandi, M. Sivakumar, S. M. Chen, M. Sakthivel, G. Raghavi, T. W. Chen, R. Madhu, Electrochemical synthesis of lutetium (III) hexacyanoferrate/poly (taurine) modified glassy carbon electrode for the sensitive detection of sulfite in tap water, Journal of The Electrochemical Society 165 (2018) B469-8474. https://doi.org/10.1149/2.1171810jes

J. Yang, X. Xu, X. Mao, L. Jiang, X. Wang, An electrochemical sensor for determination of sulfite (SO32-) in water based on molybdenum disulfide flakes/nafion modified electrode, International Journal of Electrochemical Science 15 (2020) 10304-10314. https://doi.org/10.20964/2020.10.48

V. Sudha, K. Krishnamoorthy, S. M. S. Kumar, R. Thangamuthu, Copper oxide nanosheet modified electrodes for simultaneous determination of environmentally hazardous anions, Journal of Alloys and Compounds 764 (2018) 959-968. https://doi.org/10.1016/j.jallcom.2018.06.077

S. Tajik, H. Beitollahi, H. W. Jang, M. Shokouhimehr, A screen printed electrode modified with Fe3O4@polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine, Talanta 232 (2021) 122379. https://doi.org/10.1016/j.talanta.2021.122379

R. S. Kumar, G. K. Jayaprakash, S. Manjappa, M. Kumar, A. P. Kumar, Theoretical and electrochemical analysis of L-serine modified graphite paste electrode for dopamine sensing applications in real samples, Journal of Electrochemical Science and Engineering 12 (2022) 1243-1250. https://doi.org/10.5599/jese.1390

G. K. Jayaprakash, B. E. K. Swamy, S. C. Sharma, J. J. Santoyo-Flores, Analyzing electron transfer properties of ferrocene in gasoline by cyclic voltammetry and theoretical methods, Microchemical Journal 158 (2020) 105116. https://doi.org/10.1016/j.microc.2020.105116

G. K. Jayaprakash, B. K. Swamy, H. N. G. Ramírez, M. T. Ekanthappa, R. Flores-Moreno, Quantum chemical and electrochemical studies of lysine modified carbon paste electrode surfaces for sensing dopamine, New Journal of Chemistry 42 (2018) 4501-4506. https://doi.org/10.1039/C7NJ04998F

J. Mohanraj, D. Durgalakshmi, R. A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh, Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor, Journal of Colloid and Interface Science 566 (2020) 463-472. https://doi.org/10.1016/j.jcis.2020.01.089

H. Karimi-Maleh, Y. Liu, Z. Li, R. Darabi, Y. Orooji, C. Karaman, F. Karimi, M. Baghayeri, J. Rouhi, L. Fu, Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study, Chemosphere 332 (2023) 138815. https://doi.org/10.1016/j.chemosphere.2023.138815

A. M. Abdel-Aziz, H. H. Hassan, I. H. Badr, Glassy carbon electrode electromodification in the presence of organic monomers: electropolymerization versus activation, Analytical Chemistry 92 (2020) 7947-7954. https://doi.org/10.1021/acs.analchem.0c01337

L. Huang, R. Su, F. Xi, Sensitive detection of noradrenaline in human whole blood based on Au nanoparticles embedded vertically-ordered silica nanochannels modified pre-activated glassy carbon electrodes, Frontiers in Chemistry 11 (2023) 1126213. https://doi.org/10.3389/fchem.2023.1126213

B. Shobana, L. Gayathri, P. S. Kumar, P. Prakash, Nonenzymatic interference free nano-molar range detection of L-tyrosine in human serum and urine samples using carbon dots doped cerium titanate modified glassy carbon electrode, Microchemical Journal 193 (2023) 109116. https://doi.org/10.1016/j.microc.2023.109116

J. A. Buledi, N. Mahar, A. Mallah, A. R. Solangi, I. M. Palabiyik, N. Qambrani, F. Karimi, Y. Vasseghian, H. Karimi-Maleh, Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: a potential method for environmental remediation, Food and Chemical Toxicology 161 (2022) 112843. https://doi.org/10.1016/j.fct.2022.112843

A. Hosseini Fakhrabad, R. Sanavi Khoshnood, M.R. Abedi, M. Ebrahimi, Fabrication a composite carbon paste electrodes (CPEs) modified with multi-wall carbon nano-tubes (MWCNTs/N, N-Bis (salicyliden)-1,3-propandiamine) for determination of lanthanum (III), Eurasian Chemical Communications 3 (2021) 627-634. https://doi.org/10.22034/ecc.2021.288271.1182

H. Peyman, H. Roshanfekr, A. Babakhanian, H. Jafari, PVC membrane electrode modified by lawson as synthetic derivative ionophore for determination of cadmium in alloy and wastewater, Chemical Methodologies 5 (2021) 446-453. https://doi.org/10.22034/chemm.2021.135266

S. Tajik, Y. Orooji, F. Karimi, Z. Ghazanfari, H. Beitollahi, M. Shokouhimehr, H. W. Jang, High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth, Journal of Food Measurement and Characterization 15 (2021) 4617-4622. https://doi.org/10.1007/s11694-021-01027-0

V. Tallapaneni, L. Mude, D. Pamu, V. V. S. R. Karri, Formulation, characterization and in vitro evaluation of dual-drug loaded biomimetic chitosan-collagen hybrid nanocomposite scaffolds, Journal of Medicinal and Chemical Sciences 5 (2022) 1059-1074. https://doi.org/10.26655/JMCHEMSCI.2022.6.19

S. Karimi, H. Namazi, Fe3O4@PEG-coated dendrimer modified graphene oxide nanocomposite as a pH-sensitive drug carrier for targeted delivery of doxorubicin, Journal of Alloys and Compounds 879 (2021) 160426. https://doi.org/10.1016/j.jallcom.2021.160426

C. Karaman, O. Karaman, P. L. Show, Y. Orooji, H. Karimi-Maleh, Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: equilibrium, kinetics, thermodynamics and artificial neural network modeling, Environmental Research 207 (2021) 112156. https://doi.org/10.1016/j.envres.2021.112156

R. Han, L. Guan, S. Zhang, Y. Lin, J. Tao, Boosted cycling stability of CoP nano-needles based hybrid supercapacitor with high energy density upon surface phosphorization, Electrochimica Acta 368 (2021) 137690. https://doi.org/10.1016/j.electacta.2020.137690

S. Janitabar Darzi, H. Bastami, Au decorated mesoporous TiO2 as a high performance photocatalyst towards crystal violet dye, Advanced Journal of Chemistry-Section A 5 (2022) 22-30. https://doi.org/10.22034/ajca.2022.305643.1281

H. Zu, D. Gao, Non-viral vectors in gene therapy: Recent development, challenges, and prospects. The AAPS Journal 23 (2021) 78. https://doi.org/10.1208/s12248-021-00608-7

F. M. Nareetsile, T. P. Matshwele, S. Odisitse, Metallo-drugs as promising antibacterial agents and their modes of action, Journal of Medicinal and Chemical Sciences 5 (2022) 1109-1131. https://doi.org/10.26655/JMCHEMSCI.2022.6.24

H. Beitollahi, F. Garkani-Nejad, Z. Dourandish, S. Tajik, A novel voltammetric amaranth sensor based on screen printed electrode modified with polypyrrole nanotubes, Environmental Research 214 (2022) 113725. https://doi.org/10.1016/j.envres.2022.113725

G. Jeevanandham, K. Vediappan, Z. A. ALOthman, T. Altalhi, A. K. Sundramoorthy, Fabrication of 2D-MoSe2 incorporated NiO Nanorods modified electrode for selective detection of glucose in serum samples, Scientific Reports 11 (2021) 13266. https://doi.org/10.1038/s41598-021-92620-2

H. Karimi-Maleh, C. T. Fakude, N. Mabuba, G. M. Peleyeju, O. A. Arotiba, The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor, Journal of Colloid and Interface Science 554 (2019) 603-610. https://doi.org/10.1016/j.jcis.2019.07.047

H. Beitollahi, H. Mahmoudi-Moghaddam, S. Tajik, Voltammetric determination of bisphenol A in water and juice using a lanthanum (III)-doped cobalt (II, III) nanocube modified carbon screen-printed electrode, Analytical Letters 52 (2019) 1432-1444. https://doi.org/10.1080/00032719.2018.1545132

S. Saghiri, M. Ebrahimi, M. R. Bozorgmehr, Electrochemical amplified sensor with MgO nanoparticle and ionic liquid: a powerful strategy for methyldopa analysis, Chemical Methodologies 5 (2021) 234-239. https://doi.org/10.22034/chemm.2021.128530

H. Roshanfekr, ‎A simple specific dopamine aptasensor based on partially reduced graphene oxide–AuNPs composite, Progress in Chemical and Biochemical Research 6 (2023) 61-70. https://doi.org/10.22034/pcbr.2023.381280.1245

A. M. Attaran, S. Abdol-Manafi, M. Javanbakht, M. Enhessari, Voltammetric sensor based on Co3O4/SnO2 nanopowders for determination of diltiazem in tablets and biological fluids, Journal of Nanostructure in Chemistry 6 (2016) 121–128. https://doi.org/10.1007/s40097-015-0186-6

M. Bijad, H. Karimi-Maleh, M. Farsi, S. A. Shahidi, An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples, Journal of Food Measurement and Characterization 12 (2018) 634-640. https://doi.org/10.1007/s11694-017-9676-1

S. Tajik, M. R. Aflatoonian, H. Beitollahi, I. Sheikhshoaie, Z. Dourandish, F. Garkani-Nejad, M. Bamorovat, Electrocatalytic oxidation and selective voltammetric detection of methyldopa in the presence of hydrochlorothiazide in real samples, Microchemical Journal 158 (2020) 105182. https://doi.org/10.1016/j.microc.2020.105182

H. Karimi-Maleh, R. Darabi, F. Karimi, C. Karaman, S. A. Shahidi, N. Zare, M. Baghayeri, L. Fu, S. Rostamnia, J. Rouhi, State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review, Environmental Research 222 (2023) 115338. https://doi.org/10.1016/j.envres.2023.115338

A. C. Power, B. Gorey, S. Chandra, J. Chapman, Carbon nanomaterials and their application to electrochemical sensors: a review, Nanotechnology Reviews 7 (2018) 19-41. https://doi.org/10.1515/ntrev-2017-0160

M. Liu, Q. Guan, S. Liu, Nitrogen-doped hollow carbon spheres for electrochemical detection of heavy metal ions, Ionics 24 (2018) 2783-2793. https://doi.org/10.1007/s11581-017-2390-5

Y. Wang, Q. Dai, L. Yang, Y. Liu, C. Yu, C. Yao, X. Xu, One-pot and surfactant-free synthesis of N-doped mesoporous carbon spheres for the sensitive and selective screening of small biomolecules, Journal of Electroanalytical Chemistry 873 (2020) 114462. https://doi.org/10.1016/j.jelechem.2020.114462

M. Liu, T. Zhang, H. Ren, L. Wang, T. Meng, J. Zhao, Y. Zhang, Nitrogen-doped hollow carbon nanospheres for highly sensitive electrochemical sensing of nitrobenzene, Materials Research Bulletin 104 (2018) 15-19. https://doi.org/10.1016/j.materresbull.2018.04.005

H. Yang, S. Li, H. Yu, F. Zheng, L. Lin, J. Chen, Y. Lin, In situ construction of hollow carbon spheres with N, Co, and Fe co-doping as electrochemical sensors for simultaneous determination of dihydroxybenzene isomers, Nanoscale 11 (2019) 8950-8958. https://doi.org/10.1039/C9NR01146C

C. Peng, S. Zhou, X. Zhang, T. Zeng, W. Zhang, H. Li, P. Zhao, One pot synthesis of nitrogen-doped hollow carbon spheres with improved electrocatalytic properties for sensitive H2O2 sensing in human serum. Sensors and Actuators B 270 (2018) 530-537. https://doi.org/10.1016/j.snb.2018.05.036

W. Long, Y. Xie, H. Shi, J. Ying, J. Yang, Y. Huang, L. Fu, Preparation of nitrogen-doped hollow carbon spheres for sensitive catechol electrochemical sensing, Fullerenes, Nanotubes and Carbon Nanostructures 26 (2018) 856-862. https://doi.org/10.1080/1536383X.2018.1512973

S. Tajik, F. Sharifi, H. Beitollahi, Differential pulse voltammetric analysis of hydrazine in water samples by using screen-printed graphite electrode modified with nitrogen-doped hollow carbon spheres, Industrial & Engineering Chemistry Research 62 (2023) 4694-4703. https://doi.org/10.1021/acs.iecr.2c03107

A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, Wiley, New York (2001). ISBN: 978-1-118-31280-3

H. Karimi-Maleh, A. A. Ensafi, H. Beitollahi, V. Nasiri, M. A. Khalilzadeh, P. Biparva, Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: application for determination of sulfite in real samples, Ionics 18 (2012) 687-694. https://doi.org/10.1007/s11581-011-0654-z

A. Siroueinejad, A. Abbaspour, M. Shamsipur, Electrocatalytic oxidation and determination of sulfite with a novel copper‐cobalt hexacyanoferrate modified carbon paste electrode, Electroanalysis 21 (2009) 1387-1393. https://doi.org/10.1002/elan.200804535

T. Kondori, S. Tajik, N. Akbarzadeh-T, H. Beitollahi, R. Hosseinzadeh, F. Mousazadeh, C. Graiff, A novel carbon paste electrode-modified electrocatalytic CO–Ce–NPs for sulfite detection: a sonochemical synthesis, Iranian Journal of Science and Technology, Transactions A 46 (2022) 1387-1398. https://doi.org/10.1007/s40995-022-01345-y

Downloads

Published

25-10-2023 — Updated on 25-10-2023

How to Cite

Basande, A., & Beitollahi, H. (2023). Electrocatalytic response of nitrogen-doped hollow carbon spheres modified glassy carbon electrode for sulphite detection in water: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(6), 937–948. https://doi.org/10.5599/jese.1966

Issue

Section

Electroanalytical chemistry

Most read articles by the same author(s)

1 2 > >>