Comparative corrosion behavior of Au50-Ag25-Pd25 and Ni88.6-Cr11.4 alloys utilized in dental applications

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.1931

Keywords:

Dental alloys, gold-silver-palladium, nickel-chromium, corrosion, electrochemical tests, surface morphology
Graphical Abstract

Abstract

The electrochemical behaviour of alloys (Au50-Ag25-Pd25 and Ni88.6-Cr11.4) was studied in Fusayama's artificial saliva at pH 6.5 and 37 °C by using open circuit potential, electro­chemical impedance spectroscopy, and potentiodynamic polarization measure­ments. Electrochemical impedance spectroscopy results were simulated with an equivalent electrical circuit. After immersion in artificial saliva, surface characterization of samples was done using scanning electron microscopy connected with energy-dispersive spectro­scopy. All obtained results revealed that Au50-Ag25-Pd25 alloy is much more resistive than Ni88.6-Cr11.4 and can be recommended for the effective treatment of patients with dental prosthetics that have metal frameworks.

s.

Downloads

Download data is not yet available.

References

F. Golgovici, M. Prodana, F. Ionascu, G. Demetrescu, A Comparative Electrochemical and Morphological Investigation on the Behavior of NiCr and CoCr Dental Alloys at Various Temperatures, Metals 11(2) (2021) 256. https://doi.org/10.3390/met11020256

D. Gheorghe, I. Pencea, I. V. Antoniac, R. N. Turcu, R. N., Investigation of the microstructure, hardness and corrosion resistance of a new 58Ag24Pd11Cu2Au2Zn1. 5In1. 5Sn dental alloy, Materials 12(4) (2019) 4199. https://doi.org/10.3390/ma12244199

L. A. O' Brien, R.M. German, Tarnish and corrosion behaviour of palladium-silver alloys, Journal of Materials Science 23 (1988) 3563-3571. https://doi.org/10.1007/BF00540496

P. P. Corso, R. M. German, H. D. Simmons, Corrosion evaluation of gold-based dental alloys, Journal of Dental Research 64(5) (1985) 854-859. https://doi.org/10.1177/00220345850640051401

M. Nakagawa, S. Matsuya, M. Ohta, Effect of microstructure on the corrosion behaviour of dental gold alloys, Journal of Materials Science: Materials in Medicine 3 (1992) 114-118. https://doi.org/10.1007/BF00705278

P. R. Mezger, A. L. H. Stols, M. M. A. Vrijhoel, E. H Greener, Metallurgical aspects and corrosion behavior of yellow low-gold alloys, Dental Materials 5 (1989) 350-354. https://doi.org/10.1016/0109-5641(89)90129-2

H. Herø, Tarnishing in vivo and in vitro of a low-gold alloy related to its structure, Journal of Dental Research 6 (1984) 926-931. https://doi.org/10.1177/00220345850640020901

F. Bechir, S. M. Bataga, E. Ungureanu, D. M. Vranceanu, M. Pacurar, E. S. Bechir, C. M. Cotrut, Experimental study regarding the behavior at different pH of two types of Co-Cr alloys used for prosthetic restorations, Materials 14(16) (2021) 4635.https://doi.org/10.3390/ma14164635

L. Niemi, H. Herø, Materials Science Structure, Corrosion, and Tarnishing of Ag-Pd-Cu Alloys, Journal of Dental Research 9 (1985) 1163-1169. https://doi.org/10.1177/00220345850640091501

M. L. Santos, H. A. Acciari, L. C. O. Vercik, A. C. Guastaldi, Laser weld: microstructure and corrosion study of Ag–Pd–Au–Cu alloy of the dental application, Materials Letters 57 (2003) 1888-1893. https://doi.org/10.1016/S0167-577X(02)01095-9

K. Mouflih, K. E. Mouaden, M. Boudalia, A. Bellaouchou, M. Tabyaoui, A. Guenbour, I. Warrad, A. Zarrouk, The Effect of the Moroccan Salvadora Persica Extract on the Corrosion Behavior of the Ni–Cr Non-precious Dental Alloy in Artificial Saliva, Journal of Bio-and Tribo-Corrosion 7 (2021) 61. https://doi.org/10.1007/s40735-021-00495-7

L. Porojan, C. E. Savencu, L. V. Costea, M. L. Dan, S. D. Porojan, Corrosion behavior of Ni-Cr dental casting alloys, International Journal of Electrochemical Science 13 (2018) 410-423. https://doi.org/10.20964/2018.01.08

G. L. Turdean, A. Craciun, D. Popa, M. Constantiniuc, Study of electrochemical corrosion of biocompatible Co-Cr and Ni-Cr dental alloys in artificial saliva. Influence of pH ofthe solution, Materials Chemistry and Physics 233 (2019) 390-398. https://doi.org/10.1016/j.matchemphys.2019.05.041

A. B. Ziya, K. Ohshima, X-ray diffraction study of the structure and thermal parameters of the ternary Au–Ag–Pd alloys, Journal of Alloys and Compounds 425 (2006) 123-128. https://doi.org/10.1016/j.jallcom.2006.01.023

C. E. Savencu, L. V. Costea, M. L. Dan, L. Porojan, Corrosion behaviour of Co-Cr dental alloys processed by alternative CAD/CAM technologies in artificial saliva solutions, International Journal of Electrochemical Science 13 (2018) 3588-3600. https://doi.org/10.20964/2018.04.40

M. C. Lucchetti, G. Fratto, F. Valeriani, E. De Vittori, S. Giampaoli, P. Papetti, V. R. Spica, L. Manzon, Cobalt-chromium alloys in dentistry: An evaluation of metal ion release, The Journal of Prosthetic Dentistry 114 (2015) 602-608. https://doi.org/10.1016/j.prosdent.2015.03.002

J. N. Balaraju, V. Ezhil Selvi, K. S. Rajam, Electrochemical behavior of nanocrystalline Ni–P alloys containing tin and tungsten, Protection of Metals and Physical Chemistry of Surfaces 46 (2010) 686-691. https://doi.org/10.1134/S2070205110060109

C. Yang, Q. Wang, Y. Ren, D. Jin, D. Liu, M. Moradi, X. Chen, H. Li, D. Xu, F. Wang, Corrosion behavior of high nitrogen nickel-free austenitic stainless steel in the presence of artificial saliva and Streptococcus mutans, Bioelectrochemistry 142 (2021) 107940. https://doi.org/10.1016/j.bioelechem.2021.107940

D. Barjaktarević, J. Bajat, I. Cvijović-Alagić, I. Dimić, A. Hohenwarter, V. Đokić, M. Rakin, The corrosion resistance in artificial saliva of titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion, Procedia Structural Integrity 13 (2018) 1834-1839. https://doi.org/10.1016/j.prostr.2018.12.332

M. Bahraminasab, M. Bozorg, S. Ghaffari, F. Kavakebian, Electrochemical corrosion of Ti-Al2O3 biocomposites in Ringer's solution, Journal of Alloys and Compounds 777 (2019) 34-43. https://doi.org/10.1016/j.jallcom.2018.09.313

X. Z. Xin, J. Chen, N. Xiang, Y. Gong, B. Wei, Surface characteristics and corrosion properties of selective laser melted Co–Cr dental alloy after porcelain firing, Dental Materials 30 (2014) 263-270. https://doi.org/10.1016/j.dental.2013.11.013

L. Jinlong, L. Hongyun, Effect of surface burnishing on texture and corrosion behavior of 2024 aluminum alloy, Surface and Coatings Technology 235 (2013) 513-520. https://doi.org/10.1016/j.surfcoat.2013.07.071

Y. Lu, S. Guo, Y. Yang, Y. Liu, Y. Zhou, S. Wu, C. Zhao, J. Lin. Effect of thermal treatment and fluoride ions on the electrochemical corrosion behavior of selective laser melted CoCrW alloy, Journal of Alloy and Compounds 730 (2018) 552-562. https://doi.org/10.1016/j.jallcom.2017.09.318

Y. Liu, J. Wen, H. Yao, J. He, H.Li, Enhancing the Corrosion Resistance Performance of Mg-1.8 Zn-1.74 Gd-0.5 Y-0.4 Zr, Biomaterial via Solution Treatment Process, Materials 13 (2020) 836. https://doi.org/10.3390/ma13040836

Z. Hamidi, S.Y. Mosavian, N. Sabbaghi, M. A. Karimi, M. Noroozifar, Cross-linked poly (N-alkyl-4-vinylpyridinium) iodides as new eco-friendly inhibitors for corrosion study of St-37 steel in 1 M H2SO4, Iranian Polymer Journal 29 (2020) 225-239. https://doi.org/10.1007/s13726-020-00787-8

M.J. Shivaram, S.B. Arya, J. Nayak, B.B. Panigrahi, Tribocorrosion behaviour of biomedical porous Ti–20Nb–5Ag alloy in simulated body fluid, Journal of Bio-and Tribo-Corrosion 7 (2021) 59. https://doi.org/10.1007/s40735-021-00491-x

E. D. Akpan, I. O. Isaac, L. O. Olasunkanmi, E. E. Ebenso, E. S. M. Sherif, Acridine-based thiosemicarbazones as novel inhibitors of mild steel corrosion in 1 M HCl: synthesis, electrochemical, DFT and Monte Carlo simulation studies, RSC Advances 9 (2019) 29590-29599. https://doi.org/10.1039/C9RA04778F

D. Mareci, D. Sutiman, A. Cailean, G. Bolat, Comparative corrosion study of Ag-Pd and Co-Cr alloys used in dental applications, Bulletin of Materials Science 33 (2010) 491-500. https://doi.org/10.1007/s12034-010-0075-z

F. Bechir, S.M. Bataga, A. Tohati, E. Ungureanu, C. M. Cotrut, E. S. Bechir, M, Suciu, D. M. Vranceanu, Evaluation of the behavior of two CAD/CAM fiber-reinforced composite dental materials by immersion tests, Materials 14 (2021) 7185. https://doi.org/10.3390/ma14237185

M. J. Shivaram, S. B. Arya, J. Nayak, B. B. Panigrahi, Electrochemical Corrosion and Impedance Studies of Porous Ti–x Nb–Ag Alloy in Physiological Solution, Transactions of the Indian Institute of Metals 73 (2020) 921-928. https://doi.org/10.1007/s12666-020-01904-0

W. Xu, X. Lu, B. Zhang, C. Liu, S. Lv, S. Yang, X. Qu, Effects of porosity on mechanical properties and corrosion resistances of PM-fabricated porous Ti-10Mo alloy, Metals 8 (2018) 188. https://doi.org/10.3390/met8030188

F. Bechir, S.M. Bataga, E. Ungureanu, D. M. Vranceanu, M. Pacurar, E. S. Bechir, C. M. Cotrut, Experimental study regarding the behavior at different pH of two types of Co-Cr alloys used for prosthetic restoration, Materials 14 (2021) 4635. https://doi.org/10.3390/ma14164635

Downloads

Published

29-07-2023

How to Cite

Liaquat, I., Ziya, A. B., Mushtaq , W., Ibrahim, A., Malik, U., Qilong, G., & Danial, M. (2023). Comparative corrosion behavior of Au50-Ag25-Pd25 and Ni88.6-Cr11.4 alloys utilized in dental applications: Original scientific paper. Journal of Electrochemical Science and Engineering. https://doi.org/10.5599/jese.1931

Issue

Section

Corrosion