Influence of polarization curve slope on the accuracy of local copper electrodeposition from sulphate electrolyte
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1899Keywords:
additive manufacturing, 3d printing, throwing power, profilomertyAbstract
Local electrochemical deposition is an emerging technique, used in the field of additive manufacturing. The advantage of electrochemical additive manufacturing lies in the utilization of room temperature electrolyte and permits to manufacture microscale objects with high precision. The increase in deposition current increases the deposition area, so measures are to be taken to focus the electric field. This work describes the influence of polarization curve slope on the accuracy of local deposition, both experimentally and by computer modelling. The copper was deposited using rotating anode on the surface of stainless steel from sulphate electrolyte. The influence of electrolyte composition on the accuracy of deposition was investigated. The profile of deposited parts was analyzed by profilometry and microscopy. The increased amount of sulfuric acid and presence of the additive in the electrolyte was shown to increase the accuracy of deposition by changing the slope of cathodic polarization curve from 320 to 1100 mA V–1cm–2).
Downloads
References
I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer, New York, USA, 2010, p. 472. https://doi.org/10.1007/978-1-4419-1120-9
L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez, K. N. Amato, P. W. Shindo, F. R. Medina, R. B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies, Journal of Materials Science & Technology 28 (2012) 42-54. https://doi.org/10.1016/S2238-7854(12)70009-1
W. E. Frazier, Metal additive manufacturing: a review, Journal of Materials Engineering and Performance 23 (2014) 1917-1928. https://doi.org/10.1007/s11665-014-0958-z
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Materialia 117 (2016) 371-392. https://doi.org/10.1016/j.actamat.2016.07.019
C. Körner, Additive manufacturing of metallic components by selective electron beam melting, International Materials Reviews 61 (2016) 361-377. https://doi.org/10.1080/09506608.2016.1176289
T.M. Braun, D.T. Schwartz. The emerging role of electrodeposition in additive manufacturing. The Electrochemical Society Interface 25 (2016) 69-73. https://doi.org/10.1149/2.F07161if
X. Li, P. Ming, S. Ao, W. Wang, Review of additive electrochemical micro-manufacturing technology, International Journal of Machine Tools and Manufacture 173 (2022) 103848. https://doi.org/10.1016/j.ijmachtools.2021.103848
G. Ercolano, T. Zambelli, C. van Nisselroy, D. Momotenko, J. Vörös, T. Merle, W.W. Koelmans Multiscale additive manufacturing of metal microstructures, Advanced Engineering Materials 22 (2020) 1900961. https://doi.org/10.1002/adem.201900961
L. Hirt, R.R. Grüter, T. Berthelot, R. Cornut, J. Vörös, T. Zambelli, Local surface modification via confined electrochemical deposition with FluidFM, RSC Advances 103 (2015) 84517-84522. https://doi.org/10.1039/c5ra07239e
W. Ren, J. Xu, Z. Lian, P. Yu, H. Yu, Modeling and experimental study of the localized electrochemical micro additive manufacturing technology based on the fluidFM. Materials 13 (2020) 2783. https://doi.org/10.3390/ma13122783
G. Ercolano, C. van Nisselroy, T. Merle, J. Vörös, D. Momotenko, W. W. Koelmans, T. Zambelli Additive manufacturing of sub-micron to sub-mm metal structures with hollow AFM cantilevers, Micromachines 11 (2020) 6. https://doi.org/10.3390/mi11010006
W. Ren, J. Xu, Z. Lian, X. Sun, Z. Xu, H. Yu, Localized electrodeposition micro additive manufacturing of pure copper microstructures, International Journal of Extreme Manufacturing 4 (2021) 015101. https://doi.org/10.1088/2631-7990/ac3963
A. Ambrosi, R. D. Webster, M. Pumera, Electrochemically driven multi-material 3D-printing. Applied Materials Today 18 (2020) 100530. https://doi.org/10.1016/j.apmt.2019.100530
S. Burlison, M. Minary-Jolandan, Multiphysics simulation of microscale copper printing by confined electrodeposition using a nozzle array, Journal of Applied Physics 131 (2022) 055303. https://doi.org/10.1063/5.0072183
Y. Guo, P. Liu, P. Jiang, Y. Hua, K. Shi, H. Zheng, Y. Yang, A flow-rate-controlled double-nozzles approach for electrochemical additive manufacturing. Virtual and Physical Prototyping 17 (2022) 52-68. https://doi.org/10.1080/17452759.2021.1989751
X. Chen, X. Liu, P. Childs, N. Brandon, B. Wu, A low cost desktop electrochemical metal 3D printer, Advanced Materials Technologies 10 (2017) 1700148. https://doi.org/10.1002/admt.201700148
F. Zhang, D. Li, W. Rong, L. Yang, Y. Zhang, Study of microscale meniscus confined electrodeposition based on COMSOL, Micromachines 12 (2021) 1591. https://doi.org/10.3390/mi12121591
X. Chen, X. Liu, M. Ouyang, J. Chen, O. Taiwo, Y. Xia, P. Childs, N.P. Brandon, B. Wu, Multi-metal 4D printing with a desktop electrochemical 3D printer, Scientific Reports 9 (2019) 3973. https://doi.org/10.1038/s41598-019-40774-5
A. Kamaraj, S. Lewis, M. Sundaram, Numerical study of localized electrochemical deposition for micro electrochemical additive manufacturing, Procedia CIRP 42 (2016) 788-792. https://doi.org/10.1016/j.procir.2016.02.320
V. M. Volgin, V. V. Lyubimov, I. V. Gnidina, A. D. Davydov, T. B. Kabanova, Simulation of localized electrodeposition of microwires and microtubes, Procedia CIRP 68 (2018) 242-247. https://doi.org/10.1016/j.procir.2017.12.056
E. M. El‐Giar, R. A. Said, G. E. Bridges, D. J. Thomson, Localized electrochemical deposition of copper microstructures, Journal of The Electrochemical Society 147 (2000) 586-591. https://doi.org/10.1149/1.1393237
C. Y. Lee, C. S. Lin, B. R. Lin, Localized electrochemical deposition process improvement by using different anodes and deposition directions, Journal of Micromechanics and Microengineering 18 (2008) 105008. https://doi.org/10.1088/0960-1317/18/10/105008
J. C. Lin, T. K. Chang, J. H. Yang, Y. S. Chen, C. L. Chuang, Localized electrochemical deposition of micrometer copper columns by pulse plating, Electrochimica Acta 55 (2010) 1888-1894. https://doi.org/10.1016/j.electacta.2009.11.002
M. M. Sundaram, A. B. Kamaraj, V. S. Kumar, Mask-less electrochemical additive manufacturing: a feasibility study, Journal of Manufacturing Science and Engineering 137 (2015) 021006. https://doi.org/10.1115/1.4029022
M. Sundaram, A. B. Kamaraj, G. Lillie, Experimental study of localized electrochemical deposition of Ni-Cu alloy using a moving anode, Procedia CIRP 68 (2018) 227-231. https://doi.org/10.1016/j.procir.2017.12.053
G. Vasyliev, V. Vorobyova, D. Uschapovskiy, O. Linyucheva, Local electrochemical deposition of copper from sulfate solution, Journal of Electrochemical Science and Engineering 12 (2022) 557-563. http://dx.doi.org/10.5599/jese.1352
L.T. Romankiw, A path: from electroplating through lithographic masks in electronics to LIGA in MEMS, Electrochimica Acta 42 (1997) 2985-3005. https://doi.org/10.1016/S0013-4686(97)00146-1
H. Hu, H.J. Kim, S. Somnath, Tip-based nanofabrication for scalable manufacturing, Micromachines 8 (2017) 90–120. https://doi.org/10.3390/mi8030090
L. Ménager, M. Soueidan, B. Allard, V. Bley, B. Schlegel, A -Scale Alternative Interconnection Solution of Semiconductor Dice Compatible with Power Modules 3-D Integration, IEEE Transactions on Power Electronics 25 (2010) 1667-1670. https://doi.org/10.1109/TPEL.2010.2041557
Electrode Growth Next to an Insulator, [Online]. Available: https://www.comsol.com/model/electrode-growth-next-to-an-insulator-10212
K. Bouzek, K. Borve, O.A. Lorentsen, K. Osmundsen, I. Rousar, J. Thonstad, Current Distribution at the Electrodes in Zinc Electrowinning Cells, Journal of The Electrochemical Society 142 (1995) 64–69. https://doi.org/10.1149/1.2043939
L. I. Kadaner, Dovidnyk po halʹvanostehiyi, Tekhnika, Kyiv, USSR, 1976, p. 253.
X. Feng l, H. Cao, H. Yu, L. Gaol, M. Lil. Study of internal stress on electroplating copper used in through silicon via filling, 12th International Conference on Electronic Packaging Technology & High Density Packaging, Shanghai, China, 2011, p.1-4. http://dx.doi.org/10.1109/ICEPT.2011.6067001
R. Winand, Electrocrystallization-theory and applications, Hydrometallurgy 29 (1992) 567-598. https://doi.org/10.1016/0304-386X(92)90033-V
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Ministry of Education and Science of Ukraine
Grant numbers 0122U001523