Direct electrochemical detection mechanism of ammonia in aqueous solution using Cu-decorated Si microelectrodes

Short communication

Authors

  • Alfredo Emmanuel Hench-Cabrera Institute of Physics, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico https://orcid.org/0009-0000-0554-8938
  • Enrique Quiroga-González Institute of Physics, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico https://orcid.org/0000-0003-1650-0862

DOI:

https://doi.org/10.5599/jese.1843

Keywords:

ammonia detection, electrochemical sensing, copper nanoparticles, silicon nanowalls, porous silicon, copper complex
Graphical Abstract

Abstract

Most of the reports on electrochemical ammonia detection with copper electrodes have been performed at pH 10 or higher. However, according to phase diagrams, no reactions take place between copper and ammonia under those conditions, qualifying such detec­tion of ammonia as indirect. This short paper deals with the detection of ammonia concen­tration in the micromolar range through a direct mechanism at pH 9, using a Cu-decorated microstructured Si electrode. The reaction mechanism is thoroughly studied.

Downloads

Download data is not yet available.

References

M. Vallet, M. Metzger, J. P. Haymann, M. Flamant, C. Gauci, E. Thervet, J. J. Boffa, F. Vrtovsnik, M. Froissart, B. Stengel, P. Houillier, Urinary ammonia and long-term outcomes in chronic kidney disease, Kidney International 88 (2015) 137-145. https://doi.org/10.1038/ki.2015.52

L. D. Bobermin, A. Quincozes-Santos, COVID-19 and hyperammonemia: Potential interplay between liver and brain dysfunctions, Brain, Behavior, & Immunity – Health 14 (2021) 100257. https://doi.org/10.1016/j.bbih.2021.100257

Y. Thepchuay, R. R. R. Mesquita, D. Nacapricha, A. O. S. S. Rangel, Micro-PAD card for measuring total ammonia nitrogen in saliva, Analytical and Bioanalytical Chemistry 412 (2020) 3167-3176. https://doi.org/10.1007/s00216-020-02577-w

L. Daoliang, X. Xianbao, L. Zhen, W. Tan, W. Cong, Detection methods of ammonia nitrogen in water: A review, Trends in Analytical Chemistry 127 (2020) 115890. https://doi.org/10.1016/j.trac.2020.115890

C. C. Segura, J. F. Osma, Miniaturization of cyclic voltammetry electronic systems for remote biosensing, International Journal of Biosensors & Bioelectronics 3 (2017) 297-299. 10.15406/ijbsbe.2017.03.00068

S. Yang, G. Zang, Q. Peng, J. Fan, Y. Liu, G. Zhang, Y. Zhao, H. Li, Y. Zhang, In-situ growth of 3D rosette-like copper nanoparticles on carbon cloth for enhanced sensing of ammonia based on copper electrodissolution, Analytica Chimica Acta 1104 (2020) 60-68. https://doi.org/10.1016/j.aca.2020.01.010

F. Valentini, V. Biagiotti, C. Lete, G. Palleschi, J. Wang, The electrochemical detection of ammonia in drinking water based on multi-walled carbon nanotube/copper nanoparticle composite paste electrodes, Sensors and Actuators B 128 (2007) 326-333. https://doi.org/10.1016/j.snb.2007.06.010

N. Mayo N, R. Harth, U. Mor, D. Marouani, J. Hayon, A. Bettelheim, Electrochemical response to H2, O2, CO2 and NH3 of a solid-state cell based on a cation- or anion-exchange membrane serving as a solid polymer electrolyte, Analytica Chimica Acta 310 (1995) 139-144. https://doi.org/10.1016/0003-2670(95)00112-D

M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R. S.Varma, Cu and Cu-Based nanoparticles: Synthesis and applications in catalysis, Chemical Reviews 116 (2016) 3722-3811. https://doi.org/10.1021/acs.chemrev.5b00482

F. King, G. Greidanus, D. J. Jobe, Dissolution of copper in chloride/ammonia mixtures and the implications for the stress corrosion cracking of copper containers, INIS Repository 31(26) (1999) AECL-11865. https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/030/31030403.pdf?r=1

M. Drogowska, L. Brossard, H. Ménard, Copper dissolution in NaHCO3 and NaHCO3 + NaCl aqueous solutions at pH 8, Journal of The Electrochemical Society 139 (1992) 39-47. https://doi.org/10.1149/1.2069196

V. Aca-López, E. Quiroga-González, E. Gómez-Barojas, J. Swiatowska, J. A. Luna-López, Effects of the doping level in the production of silicon nanowalls by metal assisted chemical etching, Materials Science in Semiconductor Processing 118 (2020) 105206. https://doi.org/10.1016/j.mssp.2020.105206

O. Pérez-Díaz, E. Quiroga-González, Silicon conical structures by metal assisted chemical etching, Micromachines 11 (2020) 402. https://doi.org/10.3390/mi11040402

E. Quiroga-Gonzalez, E. Ossei-Wusu, J. Carstensen, H. Föll, How to make optimized arrays of Si wires suitable as superior anode for Li-ion batteries, Journal of The Electrochemical Society 158 (2011) E119-E123. https://doi.org/10.1149/2.069111jes

J. M. Marioli, T. Kuwana, Electrochemical characterization of carbohydrate oxidation at copper electrodes, Electrochimica Acta 37 (1992) 1187-1197. https://doi.org/10.1016/0013-4686(92)85055-P

F. Letowski, J. Niemiec, Discussion on the potential/pH diagrams of the Cu-NH3-H2O and Zn-NH3-H2O systems H.E. Johnson and J. Leja (pp. 638-641, Vol. 112, No. 6), Journal of The Electrochemical Society 113 (1966) 629-630. https://doi.org/10.1149/1.2424048

B. M. Rode, Y. Tanabe, Simulation of Preferential Cation Solvation in Aqueous Ammonia, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 84 (1988) 1779-1788. https://doi.org/10.1039/F29888401779

C. H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-VCH, Weinheim, 2007. ISBN: 978-3-527-31069-2

Downloads

Published

23-07-2023 — Updated on 23-07-2023

How to Cite

Hench-Cabrera, A. E., & Quiroga-González, E. (2023). Direct electrochemical detection mechanism of ammonia in aqueous solution using Cu-decorated Si microelectrodes : Short communication. Journal of Electrochemical Science and Engineering, 13(6), 949–957. https://doi.org/10.5599/jese.1843

Issue

Section

Electroanalytical chemistry