Direct electrochemical detection mechanism of ammonia in aqueous solution using Cu-decorated Si microelectrodes
Short communication
DOI:
https://doi.org/10.5599/jese.1843Keywords:
ammonia detection, electrochemical sensing, copper nanoparticles, silicon nanowalls, porous silicon, copper complexAbstract
Most of the reports on electrochemical ammonia detection with copper electrodes have been performed at pH 10 or higher. However, according to phase diagrams, no reactions take place between copper and ammonia under those conditions, qualifying such detection of ammonia as indirect. This short paper deals with the detection of ammonia concentration in the micromolar range through a direct mechanism at pH 9, using a Cu-decorated microstructured Si electrode. The reaction mechanism is thoroughly studied.
Downloads
References
M. Vallet, M. Metzger, J. P. Haymann, M. Flamant, C. Gauci, E. Thervet, J. J. Boffa, F. Vrtovsnik, M. Froissart, B. Stengel, P. Houillier, Urinary ammonia and long-term outcomes in chronic kidney disease, Kidney International 88 (2015) 137-145. https://doi.org/10.1038/ki.2015.52
L. D. Bobermin, A. Quincozes-Santos, COVID-19 and hyperammonemia: Potential interplay between liver and brain dysfunctions, Brain, Behavior, & Immunity – Health 14 (2021) 100257. https://doi.org/10.1016/j.bbih.2021.100257
Y. Thepchuay, R. R. R. Mesquita, D. Nacapricha, A. O. S. S. Rangel, Micro-PAD card for measuring total ammonia nitrogen in saliva, Analytical and Bioanalytical Chemistry 412 (2020) 3167-3176. https://doi.org/10.1007/s00216-020-02577-w
L. Daoliang, X. Xianbao, L. Zhen, W. Tan, W. Cong, Detection methods of ammonia nitrogen in water: A review, Trends in Analytical Chemistry 127 (2020) 115890. https://doi.org/10.1016/j.trac.2020.115890
C. C. Segura, J. F. Osma, Miniaturization of cyclic voltammetry electronic systems for remote biosensing, International Journal of Biosensors & Bioelectronics 3 (2017) 297-299. 10.15406/ijbsbe.2017.03.00068
S. Yang, G. Zang, Q. Peng, J. Fan, Y. Liu, G. Zhang, Y. Zhao, H. Li, Y. Zhang, In-situ growth of 3D rosette-like copper nanoparticles on carbon cloth for enhanced sensing of ammonia based on copper electrodissolution, Analytica Chimica Acta 1104 (2020) 60-68. https://doi.org/10.1016/j.aca.2020.01.010
F. Valentini, V. Biagiotti, C. Lete, G. Palleschi, J. Wang, The electrochemical detection of ammonia in drinking water based on multi-walled carbon nanotube/copper nanoparticle composite paste electrodes, Sensors and Actuators B 128 (2007) 326-333. https://doi.org/10.1016/j.snb.2007.06.010
N. Mayo N, R. Harth, U. Mor, D. Marouani, J. Hayon, A. Bettelheim, Electrochemical response to H2, O2, CO2 and NH3 of a solid-state cell based on a cation- or anion-exchange membrane serving as a solid polymer electrolyte, Analytica Chimica Acta 310 (1995) 139-144. https://doi.org/10.1016/0003-2670(95)00112-D
M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R. S.Varma, Cu and Cu-Based nanoparticles: Synthesis and applications in catalysis, Chemical Reviews 116 (2016) 3722-3811. https://doi.org/10.1021/acs.chemrev.5b00482
F. King, G. Greidanus, D. J. Jobe, Dissolution of copper in chloride/ammonia mixtures and the implications for the stress corrosion cracking of copper containers, INIS Repository 31(26) (1999) AECL-11865. https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/030/31030403.pdf?r=1
M. Drogowska, L. Brossard, H. Ménard, Copper dissolution in NaHCO3 and NaHCO3 + NaCl aqueous solutions at pH 8, Journal of The Electrochemical Society 139 (1992) 39-47. https://doi.org/10.1149/1.2069196
V. Aca-López, E. Quiroga-González, E. Gómez-Barojas, J. Swiatowska, J. A. Luna-López, Effects of the doping level in the production of silicon nanowalls by metal assisted chemical etching, Materials Science in Semiconductor Processing 118 (2020) 105206. https://doi.org/10.1016/j.mssp.2020.105206
O. Pérez-Díaz, E. Quiroga-González, Silicon conical structures by metal assisted chemical etching, Micromachines 11 (2020) 402. https://doi.org/10.3390/mi11040402
E. Quiroga-Gonzalez, E. Ossei-Wusu, J. Carstensen, H. Föll, How to make optimized arrays of Si wires suitable as superior anode for Li-ion batteries, Journal of The Electrochemical Society 158 (2011) E119-E123. https://doi.org/10.1149/2.069111jes
J. M. Marioli, T. Kuwana, Electrochemical characterization of carbohydrate oxidation at copper electrodes, Electrochimica Acta 37 (1992) 1187-1197. https://doi.org/10.1016/0013-4686(92)85055-P
F. Letowski, J. Niemiec, Discussion on the potential/pH diagrams of the Cu-NH3-H2O and Zn-NH3-H2O systems H.E. Johnson and J. Leja (pp. 638-641, Vol. 112, No. 6), Journal of The Electrochemical Society 113 (1966) 629-630. https://doi.org/10.1149/1.2424048
B. M. Rode, Y. Tanabe, Simulation of Preferential Cation Solvation in Aqueous Ammonia, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 84 (1988) 1779-1788. https://doi.org/10.1039/F29888401779
C. H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-VCH, Weinheim, 2007. ISBN: 978-3-527-31069-2
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Consejo Nacional de Ciencia y Tecnología
Grant numbers 21077;316537 -
Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla
Grant numbers 00185-VIEP2023