Perspective on the mechanism of mass transport-induced (tip-growing) Li dendrite formation by comparing conventional liquid organic solvent with solid polymer-based electrolytes

Original scientific paper

Authors

  • Lukas Stolz Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany
  • Martin Winter Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany and MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstraße 46, 48149 Münster, Germany
  • Johannes Kasnatscheew Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany https://orcid.org/0000-0002-8885-8591

DOI:

https://doi.org/10.5599/jese.1724

Keywords:

Mass transport limitation, Li metal battery, concentration polarization, liquid electrolyte

Abstract

A major challenge of Li metal electrodes is the growth of high surface area lithium during Li deposition with a variety of possible shapes and growing mechanisms. They are reactive and lead to active lithium losses, electrolyte depletion and safety concerns due to a potential risk of short-circuits and thermal runaway. This work focuses on the mechanism of tip-growing Li dendrite as a particular high surface area lithium morphology. Its formation mechanism is well-known and is triggered during concentration polarization, i.e. during mass (Li+) transport limitations, which has been thoroughly investigated in literature with liquid electrolytes. This work aims to give a stimulating perspective on this formation mechanism by considering solid polymer electrolytes. The in-here shown absence of the characteristic “voltage noise” immediately after complete concentration polarization, being an indicator for tip-growing dendritic growth, rules out the occurrence of the particular tip-growing morphology for solid polymer electrolytes under the specific electrochemical conditions. The generally poorer kinetics of solid polymer electrolytes compared to liquid electrolytes imply lower limiting currents, i.e. lower currents to realize complete concen­tration polarization. Hence, this longer-lasting Li-deposition times in solid polymer electro­lytes are assumed to prevent tip-growing mechanism via timely enabling solid electrolyte interphase formation on fresh Li deposits, while, as stated in previous literature, in liquid electrolytes, Li dendrite tip-growth process is faster than solid electrolyte interphase forma­tion kinetics. It can be reasonably concluded that tip-growing Li dendrites are in general practically unlikely for both, (i) the lower conducting electrolytes like solid polymer electro­lytes due to enabling solid electrolyte interphase formation and (ii) good-conducting electro­lytes like liquids due to an impractically high current required for concentration polarization.

Downloads

Download data is not yet available.

References

J. Janek, W.G. Zeier, A Solid Future for Battery Development, Nature Energy 1 (2016) 16141. https://doi.org/10.1038/nenergy.2016.141

X. Wu, K. Pan, M. Jia, Y. Ren, H. He, L. Zhang, S. Zhang, Electrolyte for lithium protection: From liquid to solid, Green Energy & Environment 4 (2019) 360-374. https://doi.org/10.1016/j.gee.2019.05.003

M.S. Whittingham, Lithium Batteries and Cathode Materials, Chemical Reviews 104 (2004) 4271-4301. https://doi.org/10.1021/Cr020731c

X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review, Chemical Reviews 117 (2017) 10403-10473. https://doi.org/10.1021/acs.chemrev.7b00115

X. Zhang, Y. Yang, Z. Zhou, Towards practical lithium-metal anodes, Chemical Society Reviews 49 (2020) 3040-3071. https://doi.org/10.1039/C9CS00838A

Q. Liu, C. Du, B. Shen, P. Zuo, X. Cheng, Y. Ma, G. Yin, Y. Gao, Understanding Undesirable Anode Lithium Plating Issues in Lithium-Ion Batteries, RSC Advances 6 (2016) 88683-88700. https://doi.org/10.1039/C6RA19482F

L. Frenck, G.K. Sethi, J. A. Maslyn, N. P. Balsara, Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes, Frontiers in Energy Research 7 (2019) 115. https://doi.org/10.3389/fenrg.2019.00115

T. Waldmann, B.-I. Hogg, M. Wohlfahrt-Mehrens, Li Plating as Unwanted Side Reaction in Commercial Li-Ion Cells, Journal of Power Sources 384 (2018) 107-124. https://doi.org/10.1016/j.jpowsour.2018.02.063.

D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang, H. Zhu, Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations, Matter 3 (2020) 57-94. https://doi.org/10.1016/j.matt.2020.03.015

A. J. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon, J. deGooyer, Z. Deng, R. T. White, J. Lee, T. Rodgers, R. Petibon, S. Hy, S. J. H. Cheng, J. R. Dahn, Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis, Nature Energy 5 (2020) 693-702. https://doi.org/10.1038/s41560-020-0668-8

G. Homann, L. Stolz, K. Neuhaus, M. Winter, J. Kasnatscheew, Effective Optimization of High Voltage Solid-State Lithium Batteries by Using Poly(ethylene oxide)-Based Polymer Electrolyte with Semi-Interpenetrating Network, Advanced Functional Materials 30(46) (2020) 2006289. https://doi.org/10.1002/adfm.202006289

G. Homann, L. Stolz, M. Winter, J. Kasnatscheew, Elimination of “Voltage Noise” of Poly (Ethylene Oxide)-Based Solid Electrolytes in High-Voltage Lithium Batteries: Linear versus Network Polymers, iScience 23 (2020) 101225. https://doi.org/10.1016/j.isci.2020.101225

G. Homann, L. Stolz, J. Nair, I.C. Laskovic, M. Winter, J. Kasnatscheew, Poly(Ethylene Oxide)-based Electrolyte for Solid-State-Lithium-Batteries with High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure, Scientific Reports 10 (2020) 4390. https://doi.org/10.1038/s41598-020-61373-9

L. Stolz, G. Homann, M. Winter, J. Kasnatscheew, Realizing poly(ethylene oxide) as a polymer for solid electrolytes in high voltage lithium batteries via simple modification of the cell setup, Materials Advances 2 (2021) 3251-3256. https://doi.org/10.1039/d1ma00009h.

S. Klein, P. Barmann, O. Fromm, K. Borzutzki, J. Reiter, Q. Fan, M. Winter, T. Placke, J. Kasnatscheew, Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells, Journal of Materials Chemistry A 9 (2021) 7546. https://doi.org/10.1039/d0ta11775g.

S. Klein, P. Harte, S. van Wickeren, K. Borzutzki, S. Roser, P. Barmann, S. Nowak, M. Winter, T. Placke, J. Kasnatscheew, Re-evaluating common electrolyte additives for high-voltage lithium ion batteries, Cell Reports Physical Science 2 (2021) 100521. https://doi.org/10.1016/j.xcrp.2021.100521

S. Klein, S. van Wickeren, S. Röser, P. Bärmann, K. Borzutzki, B. Heidrich, M. Börner, M. Winter, T. Placke, J. Kasnatscheew, Understanding the Outstanding High-Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte, Advanced Energy Materials 11 (2021) 2003738. https://doi.org/10.1002/aenm.202003738

S. Klein, J. M. Wrogemann, S. van Wickeren, P. Harte, P. Barmann, B. Heidrich, J. Hesper, K. Borzutzki, S. Nowak, M. Borner, M. Winter, J. Kasnatscheew, T. Placke, Understanding the Role of Commercial Separators and Their Reactivity toward LiPF6 on the Failure Mechanism of High-Voltage NCM523 || Graphite Lithium Ion Cells, Advanced Energy Materials 12 (2022) 2102599. https://doi.org/10.1002/aenm.202102599

K. Kanamura, S. Shiraishi, Z. Takehara, Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF, Journal of The Electrochemical Society 143 (1996) 2187-2197. https://doi.org/10.1149/1.1836979

T. Matsui, K. Takeyama, Lithium deposit morphology from polymer electrolytes, Electrochimica Acta 40 (1995) 2165-2169. https://doi.org/10.1016/0013-4686(95)00158-B

S. Choudhury, The Many Shapes of Lithium, Joule 2 (2018) 2201-2203. https://doi.org/10.1016/j.joule.2018.11.001

D. Aurbach, Y. Gofer, M. Benzion, P. Aped, The behavior of lithium electrodes in propylene and ethylene carbonate - the major factors that influence li cycling efficiency, Journal of Electroanalytical Chemistry 339 (1992) 451-471. https://doi.org/10.1016/0022-0728(92)80467-i.

D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid State Ionics 148 (2002) 405-416. https://doi.org/10.1016/S0167-2738(02)00080-2

P. Bai, J. Guo, M. Wang, A. Kushima, L. Su, J. Li, F. R. Brushett, M. Z. Bazant, Interactions between Lithium Growths and Nanoporous Ceramic Separators, Joule 2 (2018) 2434-2449. https://doi.org/10.1016/j.joule.2018.08.018

J.-H. Han, E. Khoo, P. Bai, M.Z. Bazant, Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores, Scientific Reports 4 (2014) 7056. https://doi.org/10.1038/srep07056

P. Bai, J. Li, F. R. Brushett, M. Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes, Energy & Environmental Science 9 (2016) 3221-3229. https://doi.org/10.1039/C6EE01674J

D. Deng, E. V. Dydek, J.-H. Han, S. Schlumpberger, A. Mani, B. Zaltzman, M. Z. Bazant, Overlimiting Current and Shock Electrodialysis in Porous Media, Langmuir 29 (2013) 16167-16177. https://doi.org/10.1021/la4040547

J. Mindemark, M. J. Lacey, T. Bowden, D. Brandell, Beyond PEO-Alternative host materials for Li+-conducting solid polymer electrolytes, Progress in Polymer Science 81 (2018) 114-143. https://doi.org/10.1016/j.progpolymsci.2017.12.004

Z. G. Xue, D. He, X. L. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, Journal of Materials Chemistry A 3 (2015) 19218-19253. https://doi.org/10.1039/c5ta03471j

K. N. Jung, H. S. Shin, M. S. Park, J.W. Lee, Solid-State Lithium Batteries: Bipolar Design, Fabrication, and Electrochemistry, ChemElectroChem 6 (2019) 3842-3859. https://doi.org/10.1002/celc.201900736

F. B. Dias, L. Plomp, J. B. J. Veldhuis, Trends in Polymer Electrolytes for Secondary Lithium Batteries, Journal of Power Sources 88 (2000) 169-191. https://doi.org/10.1016/s0378-7753(99)00529-7

C. Brissot, M. Rosso, J. N. Chazalviel, S. Lascaud, Dendritic growth mechanisms in lithium/polymer cells, Journal of Power Sources 81 (1999) 925-929. https://doi.org/10.1016/s0378-7753(98)00242-0

L. Stolz, G. Homann, M. Winter, J. Kasnatscheew, Kinetical threshold limits in solid-state lithium batteries: Data on practical relevance of sand equation, Data in Brief 34 (2021) 106688. https://doi.org/10.1016/j.dib.2020.106688

L. Stolz, G. Homann, M. Winter, J. Kasnatscheew, The Sand equation and its enormous practical relevance for solid-state lithium metal batteries, Materials Today 44 (2021) 9-14. https://doi.org/10.1016/j.mattod.2020.11.025

L. Stolz, G. Homann, M. Winter, J. Kasnatscheew, Area Oversizing of Lithium Metal Electrodes in Solid-State Batteries: Relevance for Overvoltage and thus Performance?, ChemSusChem 14 (2021) 2163-2169. https://doi.org/10.1002/cssc.202100213

L. Stolz, S. Roser, G. Homann, M. Winter, J. Kasnatscheew, Pragmatic Approaches to Correlate between the Physicochemical Properties of a Linear Poly(ethylene oxide)-Based Solid Polymer Electrolyte and the Performance in a High-Voltage Li-Metal Battery, Journal of Physical Chemistry C 125 (2021) 18089-18097. https://doi.org/10.1021/acs.jpcc.1c03614

L. Stolz, S. Hochstadt, S. Roser, M. R. Hansen, M. Winter, J. Kasnatscheew, Single-Ion versus Dual-Ion Conducting Electrolytes: The Relevance of Concentration Polarization in Solid-State Batteries, ACS Applied Materials & Interfaces 14 (2022) 11559-11566. https://doi.org/10.1021/acsami.2c00084

J. Zhang, Y. Zhong, S. Wang, D. Han, M. Xiao, L. Sun, Y. Meng, Artificial Single-Ion Conducting Polymer Solid Electrolyte Interphase Layer toward Highly Stable Lithium Anode, ACS Applied Energy Materials 4 (2021) 862-869. https://doi.org/10.1021/acsaem.0c02740

C. Li, B. Qin, Y. Zhang, A. Varzi, S. Passerini, J. Wang, J. Dong, D. Zeng, Z. Liu, H. Cheng, Single-Ion Conducting Electrolyte Based on Electrospun Nanofibers for High-Performance Lithium Batteries, Advanced Energy Materials 9 (2019) 1803422. https://doi.org/10.1002/aenm.201803422

L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang, C. Liu, Y.-C. Cao, F. Wei, L. Mai, Interfaces in Solid-State Lithium Batteries, Joule 2 (2018) 1991-2015. https://doi.org/10.1016/j.joule.2018.07.009

J. Gao, C. Wang, D.-W. Han, D.-M. Shin, Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications, Chemical Science 12 (2021) 13248-13272. https://doi.org/10.1039/D1SC04023E

K. Xu, Nonaqueous Liquid Electrolytes for Lithium-based Rechargeable Batteries, Chemical Reviews 104 (2004) 4303-4417. https://doi.org/10.1021/Cr030203g

J. Kasnatscheew, R. Wagner, M. Winter, I. Cekic-Laskovic, Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry, Topics in Current Chemistry 376 (2018) 16. https://doi.org/10.1007/s41061-018-0196-1

I. Cekic-Laskovic, N. von Aspern, L. Imholt, S. Kaymaksiz, K. Oldiges, B. R. Rad, M. Winter, Synergistic Effect of Blended Components in Nonaqueous Electrolytes for Lithium Ion Bat-teries, Topics in Current Chemistry 375 (2017) 37. https://doi.org/10.1007/s41061-017-0125-8

L. Stolz, G. Homann, M. Winter, J. Kasnatscheew, Kinetical Threshold Limits in Solid-State Lithium Batteries: Data on Practical Relevance of Sand Equation, Data in Brief 34 (2021) 106688. https://doi.org/https://doi.org/10.1016/j.dib.2020.106688

P.G. Bruce, C.A. Vincent, Steady-State Current Flow in Solid Binary Electrolyte Cells, Journal of Electroanalytical Chemistry 225 (1987) 1-17. https://doi.org/10.1016/0022-0728(87)80001-3

G. Homann, L. Stolz, J. Nair, I.C. Laskovic, M. Winter, J. Kasnatscheew, Poly(Ethylene Oxide)-based Electrolyte for Solid-State-Lithium-Batteries with High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure, Scientific Reports 10 (2020) 4390. https://doi.org/10.1038/s41598-020-61373-9

J. Kasnatscheew, B. Streipert, S. Roser, R. Wagner, I.C. Laskovic, M. Winter, Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies, Physical Chemistry Chemical Physics 19 (2017) 16078-16086. https://doi.org/10.1039/c7cp03072j

J.R. Nair, L. Imholt, G. Brunklaus, M. Winter, Lithium Metal Polymer Electrolyte Batteries: Opportunities and Challenges, The Electrochemical Society Interface 28 (2019) 55-61. https://doi.org/10.1149/2.F05192if

M. Rosso, C. Brissot, A. Teyssot, M. Dollé, L. Sannier, J.-M. Tarascon, R. Bouchet, S. Lascaud, Dendrite short-circuit and fuse effect on Li/polymer/Li cells, Electrochimica Acta 51 (2006) 5334-5340. https://doi.org/10.1016/j.electacta.2006.02.004

Downloads

Published

09-08-2023

Issue

Section

8th RSE SEE & 9th Kurt Schwabe symposium Special Issue

How to Cite

Perspective on the mechanism of mass transport-induced (tip-growing) Li dendrite formation by comparing conventional liquid organic solvent with solid polymer-based electrolytes: Original scientific paper. (2023). Journal of Electrochemical Science and Engineering, 13(5), 715-724. https://doi.org/10.5599/jese.1724

Funding data

Similar Articles

1-10 of 437

You may also start an advanced similarity search for this article.