Computational materials discovery and development for Li and non-Li advanced battery chemistries
Review paper
DOI:
https://doi.org/10.5599/jese.1713Keywords:
DFT, machine learning, artificial intelligence, molecular dynamic simulation, Monte Carlo simulations, metal-air batteriesAbstract
Since the discovery of batteries in the 1800s, their fascinating physical and chemical properties have led to much research on their synthesis and manufacturing. Though lithium-ion batteries have been crucial for civilization, they can still not meet all the growing demands for energy storage because of the geographical distribution of lithium resources and the intrinsic limitations in the cell energy density, performance, and reliability issues. As a result, non-Li-ion batteries are becoming increasingly popular alternatives. Designing novel materials with desired properties is crucial for a quicker transition to the green energy ecosystem. Na, K, Mg, Zn, Al ion, etc. batteries are considered the most alluring and promising. This article covers all these Li, non-Li, and metal-air cell chemistries. Recently, computational screening has proven to be an effective tool to accelerate the discovery of active materials for all these cell types. First-principles methods such as density functional theory, molecular dynamics, and Monte Carlo simulations have become established techniques for the preliminary, theoretical analysis of battery systems. These computational methods generate a wealth of data that might be immensely useful in the training and validating of artificial intelligence and machine learning techniques to reduce the time and capital expenditure needed for discovering advanced materials and final product development. This review aims to summarize the application of these techniques and the recent developments in computational methods to discover and develop advanced battery chemistries.
Downloads
References
W. Chen, J. Liang, Z. Yang, G. Li, A Review of Lithium-Ion Battery for Electric Vehicle Applications and Beyond, Energy Procedia. 158 (2019) 4363-4368. https://doi.org/10.1016/j.egypro.2019.01.783
V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci. 5 (2012) 5884. https://doi.org/10.1039/c2ee02781j
K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev. 104 (2004) 4303-4418. https://doi.org/10.1021/cr030203g
I. Bloom, B. G. Potter, C. S. Johnson, K. L. Gering, J. P. Christophersen, Effect of cathode composition on impedance rise in high-power lithium-ion cells: Long-term aging results, J. Power Sources 155 (2006) 415-419. https://doi.org/10.1016/j.jpowsour.2005.05.008
W. M. Seong, K.-Y. Park, M.H. Lee, S. Moon, K. Oh, H. Park, S. Lee, K. Kang, Abnormal self-discharge in lithium-ion batteries, Energy Environ. Sci. 11 (2018) 970-978. https://doi.org/10.1039/C8EE00186C
Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, B. Li, A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards, J. Energy Chem. 59 (2021) 83-99. https://doi.org/10.1016/j.jechem.2020.10.017
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-Ion Batteries, Adv. Funct. Mater. 23 (2013) 947-958. https://doi.org/10.1002/adfm.201200691
A. Ponrouch, J. Bitenc, R. Dominko, N. Lindahl, P. Johansson, M.R. Palacin, Multivalent rechargeable batteries, Energy Storage Mater. 20 (2019) 253-262. https://doi.org/10.1016/j.ensm.2019.04.012
J. Pan, Y. Y. Xu, H. Yang, Z. Dong, H. Liu, B. Y. Xia, Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries, Adv. Sci. 5 (2018) 1700691. https://doi.org/10.1002/advs.201700691
J. Verma, D. Kumar, Metal-ion batteries for electric vehicles: current state of the technology, issues and future perspectives, Nanoscale Adv. 3 (2021) 3384-3394. https://doi.org/10.1039/D1NA00214G
P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864-B871. https://doi.org/10.1103/PhysRev.136.B864
W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
R. Jose, S. Ramakrishna, Materials 4.0: Materials big data enabled materials discovery, Appl. Mater. Today. 10 (2018) 127-132. https://doi.org/10.1016/j.apmt.2017.12.015
A. Agrawal, A. Choudhary, Deep materials informatics: Applications of deep learning in materials science, MRS Commun. 9 (2019) 779-792. https://doi.org/10.1557/mrc.2019.73
J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature. 414 (2001) 359-367. https://doi.org/10.1038/35104644
A. N. Jansen, A. J. Kahaian, K. D. Kepler, P. A. Nelson, K. Amine, D. W. Dees, D. R. Vissers, M. M. Thackeray, Development of a high-power lithium-ion battery, J. Power Sources. 81-82 (1999) 902-905. https://doi.org/10.1016/S0378-7753(99)00268-2
H. Sharma, J. Kreisel, P. Ghosez, First-principles study of PbTiO3 under uniaxial strains and stresses, Phys. Rev. B. 90 (2014) 214102. https://doi.org/10.1103/PhysRevB.90.214102
K. Chatterjee, A. D. Pathak, A. Lakma, C. S. Sharma, K. K. Sahu, A. K. Singh, Synthesis, characterization and application of a non-flammable dicationic ionic liquid in lithium-ion battery as electrolyte additive, Sci. Rep. 10 (2020) 9606. https://doi.org/10.1038/s41598-020-66341-x
K. Chatterjee, A. D. Pathak, K. K. Sahu, A. K. Singh, New Thiourea-Based Ionic Liquid as an Electrolyte Additive to Improve Cell Safety and Enhance Electrochemical Performance in Lithium-Ion Batteries, ACS Omega. 5 (2020) 16681-16689. https://doi.org/10.1021/acsomega.0c01565
T. Zhang, D. Li, Z. Tao, J. Chen, Understanding electrode materials of rechargeable lithium batteries via DFT calculations, Prog. Nat. Sci. Mater. Int. 23 (2013) 256-272. https://doi.org/10.1016/j.pnsc.2013.04.005
G. Kresse, J. Hafner, molecular dynamics for liquid metals, Phys. Rev. B. 47 (1993) 558-561. https://doi.org/10.1103/PhysRevB.47.558
A. García, N. Papior, A. Akhtar, E. Artacho, V. Blum, E. Bosoni, P. Brandimarte, M. Brandbyge, J. I. Cerdá, F. Corsetti, R. Cuadrado, V. Dikan, J. Ferrer, J. Gale, P. García-Fernández, V. M. García-Suárez, S. García, G. Huhs, S. Illera, R. Korytár, P. Koval, I. Lebedeva, L. Lin, P. López-Tarifa, S.G. Mayo, S. Mohr, P. Ordejón, A. Postnikov, Y. Pouillon, M. Pruneda, R. Robles, D. Sánchez-Portal, J. M. Soler, R. Ullah, V. W. Yu, J. Junquera, Siesta: Recent developments and applications, J. Chem. Phys. 152 (2020) 204108. https://doi.org/10.1063/5.0005077
B. Delley, An all‐electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 92 (1990) 508-517. https://doi.org/10.1063/1.458452
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys. Condens. Matter. 29 (2017) 465901. https://doi.org/10.1088/1361-648X/aa8f79
X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan, First-principles computation of material properties: the ABINIT software project, Comput. Mater. Sci. 25 (2002) 478-492. https://doi.org/10.1016/S0927-0256(02)00325-7
F. Legrain, O. I. Malyi, S. Manzhos, Comparative computational study of the energetics of Li, Na, and Mg storage in amorphous and crystalline silicon, Comput. Mater. Sci. 94 (2014) 214-217. https://doi.org/10.1016/j.commatsci.2014.04.010
C.-Y. Chou, M. Lee, G. S. Hwang, A Comparative First-Principles Study on Sodiation of Silicon, Germanium, and Tin for Sodium-Ion Batteries, J. Phys. Chem. C 119 (2015) 14843-14850. https://doi.org/10.1021/acs.jpcc.5b01099
Y. Zhao, J. Zhao, Q. Cai, SiC2 siligraphene as a promising anchoring material for lithium-sulfur batteries: a computational study, Appl. Surf. Sci. 440 (2018) 889-896. https://doi.org/10.1016/j.apsusc.2018.01.178
M. Fang, X. Liu, J.-C. Ren, S. Yang, G. Su, Q. Fang, J. Lai, S. Li, W. Liu, Revisiting the anchoring behavior in lithium-sulfur batteries: many-body effect on the suppression of shuttle effect, npj Comput. Mater. 6 (2020) 8. https://doi.org/10.1038/s41524-020-0273-1
T. Liu, Z. Jin, D.-X. Liu, C. Du, L. Wang, H. Lin, Y. Li, A density functional theory study of high-performance pre-lithiated MS2 (M = Mo, W, V) Monolayers as the Anode Material of Lithium Ion Batteries, Sci. Rep. 10 (2020) 6897. https://doi.org/10.1038/s41598-020-63743-9
S. Gharehzadeh Shirazi, M. Nasrollahpour, M. Vafaee, Investigation of Boron-Doped Graphdiyne as a Promising Anode Material for Sodium-Ion Batteries: A Computational Study, ACS Omega. 5 (2020) 10034-10041. https://doi.org/10.1021/acsomega.0c00422
A. H. Farokh Niaei, T. Hussain, M. Hankel, D. J. Searles, Hydrogenated defective graphene as an anode material for sodium and calcium ion batteries: A density functional theory study, Carbon. 136 (2018) 73-84. https://doi.org/10.1016/j.carbon.2018.04.034
M. Riyaz, S. Garg, N. Kaur, N. Goel, Boron doped graphene as anode material for Mg ion battery: A DFT study, Comput. Theor. Chem. 1214 (2022) 113757. https://doi.org/10.1016/j.comptc.2022.113757
M. I. Khan, G. Nadeem, A. Majid, M. Shakil, A DFT study of bismuthene as anode material for alkali-metal (Li/Na/K)-ion batteries, Mater. Sci. Eng. B 266 (2021) 115061. https://doi.org/10.1016/j.mseb.2021.115061
S. Bertolini, T. Jacob, Density Functional Theory Studies on Sulfur-Polyacrylonitrile as a Cathode Host Material for Lithium-Sulfur Batteries, ACS Omega 6 (2021) 9700-9708. https://doi.org/10.1021/acsomega.0c06240
O. I. Malyi, K. Sopiha, V. V. Kulish, T. L. Tan, S. Manzhos, C. Persson, A computational study of Na behavior on graphene, Appl. Surf. Sci. 333 (2015) 235-243. https://doi.org/10.1016/j.apsusc.2015.01.236
K. C. Wasalathilake, G. A. Ayoko, C. Yan, Effects of heteroatom doping on the performance of graphene in sodium-ion batteries: A density functional theory investigation, Carbon. 140 (2018) 276-285. https://doi.org/10.1016/j.carbon.2018.08.071
V. L. Chevrier, J. W. Zwanziger, J. R. Dahn, First principles studies of silicon as a negative electrode material for lithium-ion batteries, Can. J. Phys. 87 (2009) 625-632. https://doi.org/10.1139/P09-031
S. Loftager, J. M. García-Lastra, T. Vegge, A Density Functional Theory Study of the Ionic and Electronic Transport Mechanisms in LiFeBO3 Battery Electrodes, J. Phys. Chem. C 120 (2016) 18355-18364. https://doi.org/10.1021/acs.jpcc.6b03456
X. He, Q. Bai, Y. Liu, A. M. Nolan, C. Ling, Y. Mo, Crystal Structural Framework of Lithium Super‐Ionic Conductors, Adv. Energy Mater. 9 (2019) 1902078. https://doi.org/10.1002/aenm.201902078
I. Levin, NIST Inorganic Crystal Structure Databas.(ICSD) (2020). https://doi.org/10.18434/M32147 (accessed October 19, 2023)
J. A. Dawson, P. Canepa, T. Famprikis, C. Masquelier, M. S. Islam, Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries, J. Am. Chem. Soc. 140 (2018) 362-368. https://doi.org/10.1021/jacs.7b10593
E. M. Gavilán-Arriazu, M. P. Mercer, D. E. Barraco, H. E. Hoster, E. P. M. Leiva, Kinetic Monte Carlo simulations applied to Li-ion and post Li-ion batteries: a key link in the multi-scale chain, Prog. Energy. 3 (2021) 042001. https://doi.org/10.1088/2516-1083/ac1a65
L. Zhang, S. Chen, W. Wang, H. Yu, H. Xie, H. Wang, S. Yang, C. Zhang, X. Liu, Enabling dendrite-free charging for lithium batteries based on transport-reaction competition mechanism in CHAIN framework, J. Energy Chem. 75 (2022) 408-421. https://doi.org/10.1016/j.jechem.2022.09.007
X. Chen, B. Zhao, C. Yan, Q. Zhang, Review on Li Deposition in Working Batteries: From Nucleation to Early Growth, Adv. Mater. 33 (2021) 2004128. https://doi.org/10.1002/adma.202004128
Y. Lu, C. Zhao, H. Yuan, X. Cheng, J. Huang, Q. Zhang, Critical Current Density in Solid‐State Lithium Metal Batteries: Mechanism, Influences, and Strategies, Adv. Funct. Mater. 31 (2021) 2009925. https://doi.org/10.1002/adfm.202009925
J. Liu, H. Yuan, H. Liu, C. Zhao, Y. Lu, X. Cheng, J. Huang, Q. Zhang, Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries, Adv. Energy Mater. 12 (2022) 2100748. https://doi.org/10.1002/aenm.202100748
B. Ghalami Choobar, H. Modarress, R. Halladj, S. Amjad-Iranagh, Electrodeposition of lithium metal on lithium anode surface, a simulation study by: Kinetic Monte Carlo-embedded atom method, Comput. Mater. Sci. 192 (2021) 110343. https://doi.org/10.1016/j.commatsci.2021.110343
A. Kopač Lautar, D. Kopač, T. Rejec, T. Bančič, R. Dominko, Morphology evolution of magnesium facets: DFT and KMC simulations, Phys. Chem. Chem. Phys. 21 (2019) 2434-2442. https://doi.org/10.1039/C8CP06171H
S. K. Kolli, A. Van der Ven, Elucidating the Factors That Cause Cation Diffusion Shutdown in Spinel-Based Electrodes, Chem. Mater. 33 (2021) 6421-6432. https://doi.org/10.1021/acs.chemmater.1c01668
R. N. Methekar, P. W. C. Northrop, K. Chen, R. D. Braatz, V. R. Subramanian, Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer Formation, J. Electrochem. Soc. 158 (2011) A363. https://doi.org/10.1149/1.3548526
N. Sitapure, H. Lee, F. Ospina‐Acevedo, P. B. Balbuena, S. Hwang, J. S. Kwon, A computational approach to characterize formation of a passivation layer in lithium metal anodes, AIChE J. 67 (2021). https://doi.org/10.1002/aic.17073
Z. Deng, T. P. Mishra, E. Mahayoni, Q. Ma, A. J. K. Tieu, O. Guillon, J.-N. Chotard, V. Seznec, A. K. Cheetham, C. Masquelier, G. S. Gautam, P. Canepa, Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes, Nat. Commun. 13 (2022) 4470. https://doi.org/10.1038/s41467-022-32190-7
Y. Onabuta, M. Kunimoto, S. Wang, Y. Fukunaka, H. Nakai, T. Homma, Effect of Li + Addition during Initial Stage of Electrodeposition Process on Nucleation and Growth of Zn, J. Electrochem. Soc. 169 (2022) 092504. https://doi.org/10.1149/1945-7111/ac8c03
J. Wei, X. Chu, X. Sun, K. Xu, H. Deng, J. Chen, Z. Wei, M. Lei, Machine learning in materials science, InfoMat. 1 (2019) 338-358. https://doi.org/10.1002/inf2.12028
G. R. Schleder, A. C. M. Padilha, C. M. Acosta, M. Costa, A. Fazzio, From DFT to machine learning: recent approaches to materials science-a review, J. Phys. Mater. 2 (2019) 032001. https://doi.org/10.1088/2515-7639/ab084b
G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad, Accelerating materials property predictions using machine learning, Sci. Rep. 3 (2013) 2810. https://doi.org/10.1038/srep02810
D. Jha, K. Choudhary, F. Tavazza, W. Liao, A. Choudhary, C. Campbell, A. Agrawal, Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning, Nat. Commun. 10 (2019) 5316. https://doi.org/10.1038/s41467-019-13297-w
R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, Machine learning in materials informatics: recent applications and prospects, npj Comput. Mater. 3 (2017) 54. https://doi.org/10.1038/s41524-017-0056-5
A. Dave, J. Mitchell, K. Kandasamy, H. Wang, S. Burke, B. Paria, B. Póczos, J. Whitacre, V. Viswanathan, Autonomous Discovery of Battery Electrolytes with Robotic Experimentation and Machine Learning, Cell Rep. Phys. Sci. 1 (2020) 100264. https://doi.org/10.1016/j.xcrp.2020.100264
G. H. Gu, J. Noh, I. Kim, Y. Jung, Machine learning for renewable energy materials, J. Mater. Chem. A. 7 (2019) 17096-17117. https://doi.org/10.1039/C9TA02356A
B. Sanchez-Lengeling, A. Aspuru-Guzik, Inverse molecular design using machine learning: Generative models for matter engineering, Science 361 (2018) 360-365. https://doi.org/10.1126/science.aat2663
E. Kim, K. Huang, S. Jegelka, E. Olivetti, Virtual screening of inorganic materials synthesis parameters with deep learning, npj Comput. Mater. 3 (2017) 53. https://doi.org/10.1038/s41524-017-0055-6
K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science, Nature 559 (2018) 547-555. https://doi.org/10.1038/s41586-018-0337-2
Y. Liu, B. Guo, X. Zou, Y. Li, S. Shi, Machine learning assisted materials design and discovery for rechargeable batteries, Energy Storage Mater. 31 (2020) 434-450. https://doi.org/10.1016/j.ensm.2020.06.033
C. Chen, Y. Zuo, W. Ye, X. Li, Z. Deng, S. P. Ong, A Critical Review of Machine Learning of Energy Materials, Adv. Energy Mater. 10 (2020) 1903242. https://doi.org/10.1002/aenm.201903242
Li-ion Battery Aging Datasets, (2023). https://data.nasa.gov/dataset/Li-ion-Battery-Aging-Datasets/uj5r-zjdb (accessed October 19, 2023)
B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, K. Zhang, A. Choudhary, C. Wolverton, Combinatorial screening for new materials in unconstrained composition space with machine learning, Phys. Rev. B. 89 (2014) 094104. https://doi.org/10.1103/PhysRevB.89.094104
N. Kireeva, V. S. Pervov, Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches, Phys. Chem. Chem. Phys. 19 (2017) 20904-20918. https://doi.org/10.1039/C7CP00518K
S. Manna, D. Roy, S. Das, B. Pathak, Capacity prediction of K-ion batteries: a machine learning based approach for high throughput screening of electrode materials, Mater. Adv. 3 (2022) 7833-7845. https://doi.org/10.1039/D2MA00746K
A. Jain, S.P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1 (2013) 011002. https://doi.org/10.1063/1.4812323
Y. Zhang, X. He, Z. Chen, Q. Bai, A. M. Nolan, C. A. Roberts, D. Banerjee, T. Matsunaga, Y. Mo, C. Ling, Unsupervised discovery of solid-state lithium ion conductors, Nat. Commun. 10 (2019) 5260. https://doi.org/10.1038/s41467-019-13214-1
X. Chen, L. Ye, Y. Wang, X. Li, Beyond Expert‐Level Performance Prediction for Rechargeable Batteries by Unsupervised Machine Learning, Adv. Intell. Syst. 1 (2019) 1900102. https://doi.org/10.1002/aisy.201900102
X. Li, J. Li, A. Abdollahi, T. Jones, Data-driven Thermal Anomaly Detection for Batteries using Unsupervised Shape Clustering, 2021 IEEE 30th Int. Symp. Ind. Electron. ISIE, IEEE, Kyoto, Japan, 2021, pp. 1-6. https://doi.org/10.1109/ISIE45552.2021.9576348
M. V. Reddy, A. Mauger, C. M. Julien, A. Paolella, K. Zaghib, Brief History of Early Lithium-Battery Development, Materials. 13 (2020) 1884. https://doi.org/10.3390/ma13081884
J. S. Edge, S. O’Kane, R. Prosser, N. D. Kirkaldy, A. N. Patel, A. Hales, A. Ghosh, W. Ai, J. Chen, J. Yang, S. Li, M.-C. Pang, L. Bravo Diaz, A. Tomaszewska, M. W. Marzook, K. N. Radhakrishnan, H. Wang, Y. Patel, B. Wu, G. J. Offer, Lithium ion battery degradation: what you need to know, Phys. Chem. Chem. Phys. 23 (2021) 8200-8221. https://doi.org/10.1039/D1CP00359C
X. Yang, A. L. Rogach, Electrochemical Techniques in Battery Research: A Tutorial for Nonelectrochemists, Adv. Energy Mater. 9 (2019) 1900747. https://doi.org/10.1002/aenm.201900747
M.-K. Tran, A. DaCosta, A. Mevawalla, S. Panchal, M. Fowler, Comparative Study of Equivalent Circuit Models Performance in Four Common Lithium-Ion Batteries: LFP, NMC, LMO, NCA, Batteries 7 (2021) 51. https://doi.org/10.3390/batteries7030051
Z. Liang, J. Shen, X. Xu, F. Li, J. Liu, B. Yuan, Y. Yu, M. Zhu, Advances in the Development of Single‐Atom Catalysts for High‐Energy‐Density Lithium-Sulfur Batteries, Adv. Mater. 34 (2022) 2200102. https://doi.org/10.1002/adma.202200102
J. H. Kim, K. Fu, J. Choi, K. Kil, J. Kim, X. Han, L. Hu, U. Paik, Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries, Sci. Rep. 5 (2015) 8946. https://doi.org/10.1038/srep08946
L. Zhou, D.L. Danilov, R. Eichel, P. H. L. Notten, Host Materials Anchoring Polysulfides in Li-S Batteries Reviewed, Adv. Energy Mater. 11 (2021) 2001304. https://doi.org/10.1002/aenm.202001304
Y. V. Mikhaylik, J. R. Akridge, Polysulfide Shuttle Study in the Li/S Battery System, J. Electrochem. Soc. 151 (2004) A1969. https://doi.org/10.1149/1.1806394
D. Moy, A. Manivannan, S. R. Narayanan, Direct Measurement of Polysulfide Shuttle Current: A Window into Understanding the Performance of Lithium-Sulfur Cells, J. Electrochem. Soc. 162 (2015) A1-A7. https://doi.org/10.1149/2.0181501jes
K. Kumaresan, Y. Mikhaylik, R. E. White, A Mathematical Model for a Lithium-Sulfur Cell, J. Electrochem. Soc. 155 (2008) A576. https://doi.org/10.1149/1.2937304
J. P. Neidhardt, D. N. Fronczek, T. Jahnke, T. Danner, B. Horstmann, W.G. Bessler, A Flexible Framework for Modeling Multiple Solid, Liquid and Gaseous Phases in Batteries and Fuel Cells, J. Electrochem. Soc. 159 (2012) A1528-A1542. https://doi.org/10.1149/2.023209jes
M. Marinescu, T. Zhang, G.J. Offer, A zero dimensional model of lithium-sulfur batteries during charge and discharge, Phys. Chem. Chem. Phys. 18 (2016) 584-593. https://doi.org/10.1039/C5CP05755H
G. Minton, R. Purkayastha, L. Lue, A Non-Electroneutral Model for Complex Reaction-Diffusion Systems Incorporating Species Interactions, J. Electrochem. Soc. 164 (2017) E3276-E3290. https://doi.org/10.1149/2.0281711jes
A. Nazir, H. T. T. Le, C.-W. Min, A. Kasbe, J. Kim, C.-S. Jin, C.-J. Park, Coupling of a conductive Ni3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 metal-organic framework with silicon nanoparticles for use in high-capacity lithium-ion batteries, Nanoscale 12 (2020) 1629-1642. https://doi.org/10.1039/C9NR08038D
J. W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater. 1 (2016) 16013. https://doi.org/10.1038/natrevmats.2016.13
Q. Wang, M. Zhu, G. Chen, N. Dudko, Y. Li, H. Liu, L. Shi, G. Wu, D. Zhang, High‐Performance Microsized Si Anodes for Lithium‐Ion Batteries: Insights into the Polymer Configuration Conversion Mechanism, Adv. Mater. 34 (2022) 2109658. https://doi.org/10.1002/adma.202109658
Z. Yan, S. Yi, X. Li, J. Jiang, D. Yang, N. Du, A scalable silicon/graphite anode with high silicon content for high-energy lithium-ion batteries, Mater. Today Energy. 31 (2023) 101225. https://doi.org/10.1016/j.mtener.2022.101225
S. Mei, S. Guo, B. Xiang, J. Deng, J. Fu, X. Zhang, Y. Zheng, B. Gao, P.K. Chu, K. Huo, Enhanced ion conductivity and electrode-electrolyte interphase stability of porous Si anodes enabled by silicon nitride nanocoating for high-performance Li-ion batteries, J. Energy Chem. 69 (2022) 616-625. https://doi.org/10.1016/j.jechem.2022.02.002
A. Nazir, H. T. T. Le, A. Kasbe, C.-J. Park, Si nanoparticles confined within a conductive 2D porous Cu-based metal-organic framework (Cu3(HITP)2) as potential anodes for high-capacity Li-ion batteries, Chem. Eng. J. 405 (2021) 126963. https://doi.org/10.1016/j.cej.2020.126963
Y. Ren, X. Yin, R. Xiao, T. Mu, H. Huo, P. Zuo, Y. Ma, X. Cheng, Y. Gao, G. Yin, Y. Li, C. Du, Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries, Chem. Eng. J. 431 (2022) 133982. https://doi.org/10.1016/j.cej.2021.133982
M. Rashad, H. Geaney, Vapor-solid-solid growth of silicon nanowires using magnesium seeds and their electrochemical performance in Li-ion battery anodes, Chem. Eng. J. 452 (2023) 139397. https://doi.org/10.1016/j.cej.2022.139397
Y. Zheng, J. Ma, X. He, Y. Gan, J. Zhang, Y. Xia, W. Zhang, H. Huang, Fe3O4 Contribution to Core-Shell Structured Si@C Nanospheres as High-Performance Anodes for Lithium-Ion Batteries, J. Electron. Mater. 52 (2023) 1730-1739. https://doi.org/10.1007/s11664-022-10153-4
W. An, P. He, Z. Che, C. Xiao, E. Guo, C. Pang, X. He, J. Ren, G. Yuan, N. Du, D. Yang, D.-L. Peng, Q. Zhang, Scalable Synthesis of Pore-Rich Si/C@c Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes, ACS Appl. Mater. Interfaces. 14 (2022) 10308-10318. https://doi.org/10.1021/acsami.1c22656
X. Huang, J. Yang, S. Mao, J. Chang, P. B. Hallac, C. R. Fell, B. Metz, J. Jiang, P. T. Hurley, J. Chen, Controllable Synthesis of Hollow Si Anode for Long-Cycle-Life Lithium-Ion Batteries, Adv. Mater. 26 (2014) 4326-4332. https://doi.org/10.1002/adma.201400578
X. Zhou, J. Tang, J. Yang, J. Xie, L. Ma, Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries, Electrochim. Acta 87 (2013) 663-668. https://doi.org/10.1016/j.electacta.2012.10.008
Y.-S. Choi, J.-H. Park, J.-P. Ahn, J.-C. Lee, Interfacial Reactions in the Li/Si diffusion couples: Origin of Anisotropic Lithiation of Crystalline Si in Li-Si batteries, Sci. Rep. 7 (2017) 14028. https://doi.org/10.1038/s41598-017-14374-0
M. K. Y. Chan, C. Wolverton, J. P. Greeley, First Principles Simulations of the Electrochemical Lithiation and Delithiation of Faceted Crystalline Silicon, J. Am. Chem. Soc. 134 (2012) 14362-14374. https://doi.org/10.1021/ja301766z
S. C. Jung, J. W. Choi, Y.-K. Han, Anisotropic Volume Expansion of Crystalline Silicon during Electrochemical Lithium Insertion: An Atomic Level Rationale, Nano Lett. 12 (2012) 5342-5347. https://doi.org/10.1021/nl3027197
J. Pan, Q. Zhang, J. Li, M. J. Beck, X. Xiao, Y.-T. Cheng, Effects of stress on lithium transport in amorphous silicon electrodes for lithium-ion batteries, Nano Energy. 13 (2015) 192-199. https://doi.org/10.1016/j.nanoen.2015.02.020
H. Wang, H. B. Chew, Nanoscale Mechanics of the Solid Electrolyte Interphase on Lithiated-Silicon Electrodes, ACS Appl. Mater. Interfaces. 9 (2017) 25662-25667. https://doi.org/10.1021/acsami.7b07626
Y. Jiang, G. Offer, J. Jiang, M. Marinescu, H. Wang, Voltage Hysteresis Model for Silicon Electrodes for Lithium Ion Batteries, Including Multi-Step Phase Transformations, Crystallization and Amorphization, J. Electrochem. Soc. 167 (2020) 130533. https://doi.org/10.1149/1945-7111/abbbba
S. S. Damle, S. Pal, P. N. Kumta, S. Maiti, Effect of silicon configurations on the mechanical integrity of silicon-carbon nanotube heterostructured anode for lithium ion battery: A computational study, J. Power Sources 304 (2016) 373-383. https://doi.org/10.1016/j.jpowsour.2015.11.027
S. Dhillon, G. Hernández, N. P. Wagner, A. M. Svensson, D. Brandell, Modelling capacity fade in silicon-graphite composite electrodes for lithium-ion batteries, Electrochimica Acta. 377 (2021) 138067. https://doi.org/10.1016/j.electacta.2021.138067
S. Suh, H. Choi, K. Eom, H.-J. Kim, Enhancing the electrochemical properties of a Si anode by introducing cobalt metal as a conductive buffer for lithium-ion batteries, J. Alloys Compd. 827 (2020) 154102. https://doi.org/10.1016/j.jallcom.2020.154102
C. Min, A. Nazir, H. T. T. Le, C. Park, Facile Fabrication of Highly Porous 3D Sponge‐Like Si@C Composites as High‐Performance Anode Materials for Lithium‐Ion Batteries, Batter. Supercaps. 5 e202100403 (2022). https://doi.org/10.1002/batt.202100403
S.-Y. Kim, A. Ostadhossein, A. C. T. van Duin, X. Xiao, H. Gao, Y. Qi, Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation, Phys. Chem. Chem. Phys. 18 (2016) 3706-3715. https://doi.org/10.1039/C5CP07219K
A. Gao, S. Mukherjee, I. Srivastava, M. Daly, C. V. Singh, Atomistic Origins of Ductility Enhancement in Metal Oxide Coated Silicon Nanowires for Li-Ion Battery Anodes, Adv. Mater. Interfaces. 4 (2017) 1700920. https://doi.org/10.1002/admi.201700920
F. Shuang, K. E. Aifantis, A First Molecular Dynamics Study for Modeling the Microstructure and Mechanical Behavior of Si Nanopillars during Lithiation, ACS Appl. Mater. Interfaces. 13 (2021) 21310-21319. https://doi.org/10.1021/acsami.1c02977
M. A. Kharadi, G. F. A. Malik, F. A. Khanday, K. A. Shah, S. Mittal, B. K. Kaushik, Review—Silicene: From Material to Device Applications, ECS J. Solid State Sci. Technol. 9 (2020) 115031. https://doi.org/10.1149/2162-8777/abd09a
S. Sinha, H. Kim, A.W. Robertson, Preparation and application of 0D-2D nanomaterial hybrid heterostructures for energy applications, Mater. Today Adv. 12 (2021) 100169. https://doi.org/10.1016/j.mtadv.2021.100169
J. Zhuang, X. Xu, G. Peleckis, W. Hao, S. X. Dou, Y. Du, Silicene: A Promising Anode for Lithium‐Ion Batteries, Adv. Mater. 29 (2017) 1606716. https://doi.org/10.1002/adma.201606716
Z. Hu, Q. Liu, S.-L. Chou, S.-X. Dou, Two-Dimensional Material-Based Heterostructures for Rechargeable Batteries, Cell Rep. Phys. Sci. 2 (2021) 100286. https://doi.org/10.1016/j.xcrp.2020.100286
A. Y. Galashev, K. A. Ivanichkina, K. P. Katin, M. M. Maslov, Computer Test of a Modified Silicene/Graphite Anode for Lithium-Ion Batteries, ACS Omega 5 (2020) 13207-13218. https://doi.org/10.1021/acsomega.0c01240
J. E. Padilha, R. B. Pontes, Free-Standing Bilayer Silicene: The Effect of Stacking Order on the Structural, Electronic, and Transport Properties, J. Phys. Chem. C 119 (2015) 3818-3825. https://doi.org/10.1021/jp512489m
M. J. Momeni, M. Mousavi-Khoshdel, E. Targholi, First-principles investigation of adsorption and diffusion of Li on doped silicenes: Prospective materials for lithium-ion batteries, Mater. Chem. Phys. 192 (2017) 125-130. https://doi.org/10.1016/j.matchemphys.2017.01.082
A. Y. Galashev, K. A. Ivanichkina, Computational investigation of a promising Si-Cu anode material, Phys. Chem. Chem. Phys. 21 (2019) 12310-12320. https://doi.org/10.1039/C9CP01571J
B. Ipaves, J. F. Justo, L. V. C. Assali, Aluminum functionalized few-layer silicene as anode material for alkali metal ion batteries, Mol. Syst. Des. Eng. (2023) 10.1039.D2ME00172A. https://doi.org/10.1039/D2ME00172A
A. Y. Galashev, O. R. Rakhmanova, Two‐Layer Silicene on the SiC Substrate: Lithiation Investigation in the Molecular Dynamics Experiment, ChemPhysChem 23 (2022). https://doi.org/10.1002/cphc.202200250
J. Rehman, X. Fan, A. Samad, W. Zheng, Lithiation and Sodiation of Hydrogenated Silicene: A Density Functional Theory Investigation, ChemSusChem 14 (2021) 5460-5469. https://doi.org/10.1002/cssc.202101742
L. Zhao, T. Zhang, W. Li, T. Li, L. Zhang, X. Zhang, Z. Wang, Engineering of sodium-ion batteries: Opportunities and challenges, Engineering 24 (2022) 172-183. https://doi.org/10.1016/j.eng.2021.08.032
P. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises, Angew. Chem. Int. Ed. 57 (2018) 102-120. https://doi.org/10.1002/anie.201703772
M. Wang, Q. Wang, X. Ding, Y. Wang, Y. Xin, P. Singh, F. Wu, H. Gao, The prospect and challenges of sodium‐ion batteries for low‐temperature conditions, Interdiscip. Mater. 1 (2022) 373-395. https://doi.org/10.1002/idm2.12040
J. Gu, Z. Zhao, J. Huang, B. G. Sumpter, Z. Chen, MX Anti-MXenes from Non-van der Waals Bulks for Electrochemical Applications: The Merit of Metallicity and Active Basal Plane, ACS Nano 15 (2021) 6233-6242. https://doi.org/10.1021/acsnano.0c08429
S. Banerjee, K. Ghosh, S. K. Reddy, S. S. R. K. C. Yamijala, Cobalt Anti-MXenes as Promising Anode Materials for Sodium-Ion Batteries, J. Phys. Chem. C 126 (2022) 10298-10308. https://doi.org/10.1021/acs.jpcc.2c02459
F. Wei, S. Xu, J. Li, S. Yuan, B. Jia, S. Gao, G. Liu, P. Lu, Computational Investigation of Two-Dimensional Vanadium Boride Compounds for Na-Ion Batteries, ACS Omega 7 (2022) 14765-14771. https://doi.org/10.1021/acsomega.2c00134
A. Moalla, M. Noei, F. Khazali, A. Maleki, A computational study on the BN-yne sheet application in the Na-ion batteries, J. Mol. Graph. Model. 97 (2020) 107567. https://doi.org/10.1016/j.jmgm.2020.107567
C. Ye, M. Liu, A computational study on the potential application of carbon nitride nanosheets in Na-ion batteries, J. Mol. Model. 28 (2022) 40. https://doi.org/10.1007/s00894-021-05024-4
N. Li, Y. Li, J. Fan, Prediction of chemically ordered dual transition metal carbides (MXenes) as high-capacity anode materials for Na-ion batteries, Nanoscale 13 (2021) 7234-7243. https://doi.org/10.1039/D1NR00681A
P. R. Raghuvanshi, M. K. Jangid, A. Bhattacharya, A. Mukhopadhyay, Revealing Na-segregation at the Si/Graphene Interface and Its Implications toward the Na-storage Behavior of Si-Based Electrodes, ACS Appl. Mater. Interfaces. 14 (2022) 9667-9675. https://doi.org/10.1021/acsami.1c18748
M. M. Obeid, D. Ni, P.-H. Du, Q. Sun, Design of Three-Dimensional Metallic Biphenylene Networks for Na-Ion Battery Anodes with a Record High Capacity, ACS Appl. Mater. Interfaces 14 (2022) 32043-32055. https://doi.org/10.1021/acsami.2c07436
M. Zhou, Y. Shen, J. Liu, L. Lv, X. Gao, X. Wang, X. Meng, X. Yang, Y. Zheng, Z. Zhou, First-principles study on haeckelite hexagonal monolayer with high specific capacity for sodium-ion battery, Solid State Ion. 378 (2022) 115898. https://doi.org/10.1016/j.ssi.2022.115898
S. Daryabari, S. Mansouri, J. Beheshtian, M. Karimkhani, A computational study on the novel defects of graphene quantum dot as a promising anode material for sodium ion battery, Mater. Chem. Phys. 265 (2021) 124484. https://doi.org/10.1016/j.matchemphys.2021.124484
S. Chu, S. Guo, H. Zhou, Advanced cobalt-free cathode materials for sodium-ion batteries, Chem. Soc. Rev. 50 (2021) 13189-13235. https://doi.org/10.1039/D1CS00442E
P. A. Aparicio, J. A. Dawson, M. S. Islam, N. H. de Leeuw, Computational Study of NaVOPO 4 Polymorphs as Cathode Materials for Na-Ion Batteries: Diffusion, Electronic Properties, and Cation-Doping Behavior, J. Phys. Chem. C 122 (2018) 25829-25836. https://doi.org/10.1021/acs.jpcc.8b07797
G. Snarskis, J. Pilipavičius, D. Gryaznov, L. Mikoliu̅naitė, L. Vilčiauskas, Peculiarities of Phase Formation in Mn-Based Na SuperIonic Conductor (NaSICon) Systems: The Case of Na 1+2 x Mn x Ti 2- x (PO 4 ) 3 (0.0 ≤ x ≤ 1.5), Chem. Mater. 33 (2021) 8394-8403. https://doi.org/10.1021/acs.chemmater.1c02775
G. Sakata Gurmesa, T. Teshome, N. Ermias Benti, G. Ayalneh Tiruye, A. Datta, Y. Setarge Mekonnen, C. Amente Geffe, Rational Design of Biaxial Tensile Strain for Boosting Electronic and Ionic Conductivities of Na2MnSiO4 for Rechargeable Sodium‐Ion Batteries, ChemistryOpen 11 (2022). https://doi.org/10.1002/open.202100289
B. Peng, Y. Chen, L. Zhao, S. Zeng, G. Wan, F. Wang, X. Zhang, W. Wang, G. Zhang, Regulating the local chemical environment in layered O3-NaNi0.5Mn0.5O2 achieves practicable cathode for sodium-ion batteries, Energy Storage Mater. 56 (2023) 631-641. https://doi.org/10.1016/j.ensm.2023.02.001
R. Rajagopalan, Y. Tang, X. Ji, C. Jia, H. Wang, Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review, Adv. Funct. Mater. 30 (2020) 1909486. https://doi.org/10.1002/adfm.201909486
T. Hosaka, K. Kubota, A. S. Hameed, S. Komaba, Research Development on K-Ion Batteries, Chem. Rev. 120 (2020) 6358-6466. https://doi.org/10.1021/acs.chemrev.9b00463
S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors, Electrochem. Commun. 60 (2015) 172-175. https://doi.org/10.1016/j.elecom.2015.09.002
Y. Zhu, Y. Yin, X. Yang, T. Sun, S. Wang, Y. Jiang, J. Yan, X. Zhang, Transformation of Rusty Stainless-Steel Meshes into Stable, Low-Cost, and Binder-Free Cathodes for High-Performance Potassium-Ion Batteries, Angew. Chem. Int. Ed. 56 (2017) 7881-7885. https://doi.org/10.1002/anie.201702711
C. Zhao, Y. Lu, H. Liu, L. Chen, First-principles computational investigation of nitrogen-doped carbon nanotubes as anode materials for lithium-ion and potassium-ion batteries, RSC Adv. 9 (2019) 17299-17307. https://doi.org/10.1039/C9RA03235E
P. Sehrawat, C. Julien, S.S. Islam, Carbon nanotubes in Li-ion batteries, Mater. Sci. Eng. B. 213 (2016) 12-40. https://doi.org/10.1016/j.mseb.2016.06.013
S. Yu, S. Kim, H. Kim, W. Choi, Computational screening of anode materials for potassium‐ion batteries, Int. J. Energy Res. 43 (2019) 7646-7654. https://doi.org/10.1002/er.4771
G. A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin, E. Knipping, W. Peters, J.-F. Drillet, S. Passerini, R. Hahn, An Overview and Future Perspectives of Aluminum Batteries, Adv. Mater. 28 (2016) 7564-7579. https://doi.org/10.1002/adma.201601357
D. Pal, S. Chakraborty, S. Chattopadhyay, Recent Progress in Al‐, K‐, and Zn‐Ion Batteries: Experimental and Theoretical Viewpoints, Energy Technol. 9 (2021) 2100382. https://doi.org/10.1002/ente.202100382
Z. Zhang, X. Zhang, X. Zhao, S. Yao, A. Chen, Z. Zhou, Computational Screening of Layered Materials for Multivalent Ion Batteries, ACS Omega 4 (2019) 7822-7828. https://doi.org/10.1021/acsomega.9b00482
M. H. Alfaruqi, S. Islam, J. Lee, J. Jo, V. Mathew, J. Kim, First principles calculations study of α-MnO2 as a potential cathode for Al-ion battery application, J. Mater. Chem. A 7 (2019) 26966-26974. https://doi.org/10.1039/C9TA09321D
J. Li, Q. Liu, R.A. Flores, J. Lemmon, T. Bligaard, DFT simulation of the X-ray diffraction pattern of aluminum-ion-intercalated graphite used as the cathode material of the aluminum-ion battery, Phys. Chem. Chem. Phys. 22 (2020) 5969-5975. https://doi.org/10.1039/C9CP06394C
W. Wang, B. Jiang, W. Xiong, H. Sun, Z. Lin, L. Hu, J. Tu, J. Hou, H. Zhu, S. Jiao, A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation, Sci. Rep. 3 (2013) 3383. https://doi.org/10.1038/srep03383
S. Vincent, J. H. Chang, J. M. Garcia Lastra, Computational Design of Ductile Magnesium Alloy Anodes for Magnesium Batteries, Batter. Supercaps. 4 (2021) 522-528. https://doi.org/10.1002/batt.202000240
W. Jin, Z. Li, Z. Wang, Y.Q. Fu, Mg ion dynamics in anode materials of Sn and Bi for Mg-ion batteries, Mater. Chem. Phys. 182 (2016) 167-172. https://doi.org/10.1016/j.matchemphys.2016.07.019
R. Sivaraman, I. Patra, M. Jade Catalan Opulencia, R. Sagban, H. Sharma, A. Turki Jalil, A. Ghaffar Ebadi, Evaluating the potential of graphene-like boron nitride as a promising cathode for Mg-ion batteries, J. Electroanal. Chem. 917 (2022) 116413. https://doi.org/10.1016/j.jelechem.2022.116413
X. Qu, Y. Zhang, N. N. Rajput, A. Jain, E. Maginn, K. A. Persson, Computational Design of New Magnesium Electrolytes with Improved Properties, J. Phys. Chem. C 121 (2017) 16126-16136. https://doi.org/10.1021/acs.jpcc.7b04516
C. Li, X. Xie, S. Liang, J. Zhou, Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries, Energy Environ. Mater. 3 (2020) 146-159. https://doi.org/10.1002/eem2.12067
Y. Tan, F. An, Y. Liu, S. Li, P. He, N. Zhang, P. Li, X. Qu, Reaction kinetics in rechargeable zinc-ion batteries, J. Power Sources 492 (2021) 229655. https://doi.org/10.1016/j.jpowsour.2021.229655
Z. Wu, C. Lu, Y. Wang, L. Zhang, L. Jiang, W. Tian, C. Cai, Q. Gu, Z. Sun, L. Hu, Ultrathin VSe2 Nanosheets with Fast Ion Diffusion and Robust Structural Stability for Rechargeable Zinc‐Ion Battery Cathode, Small 16 (2020) 2000698. https://doi.org/10.1002/smll.202000698
J. Cai, Z. Wang, S. Wu, Y. Han, J. Li, A Machine Learning Shortcut for Screening the Spinel Structures of Mg/Zn Ion Battery Cathodes with a High Conductivity and Rapid Ion Kinetics, Energy Storage Mater. 42 (2021) 277-285. https://doi.org/10.1016/j.ensm.2021.07.042
Y. Li, J. Lu, Metal-Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice?, ACS Energy Lett. 2 (2017) 1370-1377. https://doi.org/10.1021/acsenergylett.7b00119
Md. A. Rahman, X. Wang, C. Wen, High Energy Density Metal-Air Batteries: A Review, J. Electrochem. Soc. 160 (2013) A1759-A1771. https://doi.org/10.1149/2.062310jes
K. F. Blurton, A. F. Sammells, Metal/air batteries: Their status and potential — a review, J. Power Sources 4 (1979) 263-279. https://doi.org/10.1016/0378-7753(79)80001-4
Y. Choi, M. H. Griep, J.-Y. Kim, T.-Y. Ahn, T.R. Park, H.-R. Yu, J.-H. Cho, Lithium-protective hybrid lithium-air batteries with CFx, MoS2, and WS2 composite electrodes, Carbon Lett. 31 (2021) 331-338. https://doi.org/10.1007/s42823-020-00178-2
J. Goldstein, I. Brown, B. Koretz, New developments in the Electric Fuel Ltd. zinc/air system, J. Power Sources 80 (1999) 171-179. https://doi.org/10.1016/S0378-7753(98)00260-2
M. Voskuijl, J. Van Bogaert, A. G. Rao, Analysis and design of hybrid electric regional turboprop aircraft, CEAS Aeronaut. J. 9 (2018) 15-25. https://doi.org/10.1007/s13272-017-0272-1
L.-R. Cheng, Z.-Z. Lin, X.-M. Li, X. Chen, 2D MoSi2N4 as electrode material of Li-air battery — A DFT study, J. Nanoparticle Res. 25 (2023) 55. https://doi.org/10.1007/s11051-023-05699-1
F. Fasulo, A. Massaro, A. B. Muñoz-García, M. Pavone, New Insights on Singlet Oxygen Release from Li-Air Battery Cathode: Periodic DFT Versus CASPT2 Embedded Cluster Calculations, J. Chem. Theory Comput. 19 (2023) 5210-5220. https://doi.org/10.1021/acs.jctc.3c00393
J. S. Hummelshøj, J. Blomqvist, S. Datta, T. Vegge, J. Rossmeisl, K. S. Thygesen, A. C. Luntz, K. W. Jacobsen, J. K. Nørskov, Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery, J. Chem. Phys. 132 (2010) 071101. https://doi.org/10.1063/1.3298994
Y. Xu, W.A. Shelton, O2 reduction by lithium on Au(111) and Pt(111), J. Chem. Phys. 133 (2010) 024703. https://doi.org/10.1063/1.3447381
Y. Jing, Z. Zhou, Computational Insights into Oxygen Reduction Reaction and Initial Li2O2 Nucleation on Pristine and N-Doped Graphene in Li-O2 Batteries, ACS Catal. 5 (2015) 4309-4317. https://doi.org/10.1021/acscatal.5b00332
M. D. Radin, D. J. Siegel, Charge transport in lithium peroxide: relevance for rechargeable metal-air batteries, Energy Environ. Sci. 6 (2013) 2370. https://doi.org/10.1039/c3ee41632a
N. Imanishi, O. Yamamoto, Perspectives and challenges of rechargeable lithium-air batteries, Mater. Today Adv. 4 (2019) 100031. https://doi.org/10.1016/j.mtadv.2019.100031
L.D. Chen, J.K. Nørskov, A.C. Luntz, Al-Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory, J. Phys. Chem. Lett. 6 (2015) 175-179. https://doi.org/10.1021/jz502422v
Q. X. Kang, Y. Wang, X. Y. Zhang, Experimental and theoretical investigation on calcium oxide and L-aspartic as an effective hybrid inhibitor for aluminum-air batteries, J. Alloys Compd. 774 (2019) 1069-1080. https://doi.org/10.1016/j.jallcom.2018.09.391
D. Gelman, B. Shvartsev, Y. Ein-Eli, Aluminum-air battery based on an ionic liquid electrolyte, J. Mater. Chem. A 2 (2014) 20237-20242. https://doi.org/10.1039/C4TA04721D
K. M. Kim, S.-R. Choi, J.-G. Kim, Theoretical and Experimental Study of the Crystal Orientation Effect of the Anode on the Aluminum-Air Battery Performance, J. Electrochem. Soc. 169 (2022) 120541. https://doi.org/10.1149/1945-7111/acad32
Y. Li, H. Dai, Recent advances in zinc-air batteries, Chem Soc Rev. 43 (2014) 5257-5275. https://doi.org/10.1039/C4CS00015C
S. Hosseini, S. Masoudi Soltani, Y.-Y. Li, Current status and technical challenges of electrolytes in zinc-air batteries: An in-depth review, Chem. Eng. J. 408 (2021) 127241. https://doi.org/10.1016/j.cej.2020.127241
Z. Zhao, X. Fan, J. Ding, W. Hu, C. Zhong, J. Lu, Challenges in Zinc Electrodes for Alkaline Zinc-Air Batteries: Obstacles to Commercialization, ACS Energy Lett. 4 (2019) 2259-2270. https://doi.org/10.1021/acsenergylett.9b01541
J. Stamm, A. Varzi, A. Latz, B. Horstmann, Modeling nucleation and growth of zinc oxide during discharge of primary zinc-air batteries, J. Power Sources 360 (2017) 136-149. https://doi.org/10.1016/j.jpowsour.2017.05.073
S. Lysgaard, M. K. Christensen, H. A. Hansen, J. M. García Lastra, P. Norby, T. Vegge, Combined DFT and Differential Electrochemical Mass Spectrometry Investigation of the Effect of Dopants in Secondary Zinc-Air Batteries, ChemSusChem 11 (2018) 1933-1941. https://doi.org/10.1002/cssc.201800225
R. Shah, V. Mittal, E. Matsil, A. Rosenkranz, Magnesium-ion batteries for electric vehicles: Current trends and future perspectives, Adv. Mech. Eng. 13(3) (2021) https://doi.org/10.1177/16878140211003398
Q. Guo, W. Zeng, S.-L. Liu, Y.-Q. Li, J.-Y. Xu, J.-X. Wang, Y. Wang, Recent developments on anode materials for magnesium-ion batteries: a review, Rare Met. 40 (2021) 290-308. https://doi.org/10.1007/s12598-020-01493-3
P. Bhauriyal, K. S. Rawat, G. Bhattacharyya, P. Garg, B. Pathak, First-Principles Study of Magnesium Peroxide Nucleation for Mg-Air Battery, Chem. - Asian J. 13 (2018) 3198-3203. https://doi.org/10.1002/asia.201801057
Y. Liu, H. H. Yan, X. Y. Cui, Underlying Mechanisms of the Electrolyte Structure and Dynamics on the Doped-Anode of Magnesium Batteries Based on the Molecular Dynamics Simulations, J. Electrochem. Energy Convers. Storage 18 (2021) 011015. https://doi.org/10.1115/1.4047224
A. M. Abakumov, S. S. Fedotov, E. V. Antipov, J.-M. Tarascon, Solid state chemistry for developing better metal-ion batteries, Nat. Commun. 11 (2020) 4976. https://doi.org/10.1038/s41467-020-18736-7
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Indian Institute of Technology Ropar
Grant numbers IITBBS_006;IITBBS_004