Feasibility study of amperometric and electrochemical quartz crystal microbalance measurements for in situ state of charge monitoring in vanadium flow batteries

Short communication

Authors

  • Claudia Weidlich DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt, Germany https://orcid.org/0009-0005-5721-2105
  • Felix Lulay DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt, Germany and Centre for Electrochemical and Surface Technology, Viktor-Kaplan-Strasse 2, 2700 Wr. Neustadt, Austria https://orcid.org/0009-0000-8367-8287
  • Matthias Wieland DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt, Germany https://orcid.org/0009-0009-8689-022X

DOI:

https://doi.org/10.5599/jese.1699

Keywords:

Crossover, half-cell, electrolyte properties
Graphical Abstract

Abstract

For an efficient flow battery operation, knowledge of the state of charge of the battery is essential. Monitoring the state of charge of both half cells is advantageous concerning a timely detection of crossover processes. We present the first results for amperometric and electrochemical quartz crystal microbalance measurements in a vanadium flow battery test setup. By validating with half cell potential measurements as well as ex situ titration we investigated the applicability of both electrochemical methods for an in situ half cell state of charge monitoring.

Downloads

Download data is not yet available.

References

O. Nolte, I. A. Volodin, C. Stolze, M. D. Hager, U. S. Schubert, Trust is good, control is better: a review on monitoring and characterization techniques for flow battery electrolytes, Materials Horizons 8 (2021) 1866–1925. https://doi.org/10.1039/D0MH01632B

I. Kroner, M. Becker, T. Turek, Monitoring the State of Charge of the Positive Electrolyte in a Vanadium Redox-Flow Battery with a Novel Amperometric Sensor, Batteries 5 (2019) 5. https://doi.org/10.3390/batteries5010005

C. Stolze, P. Rohland, K. Zub, O. Nolte, M. D. Hager, U. S. Schubert, A low-cost amperometric sensor for the combined state-of-charge, capacity, and state-of-health monitoring of redox flow battery electrolytes, Energy Conversion and Management X 14 (2022) 100188. https://doi.org/10.1016/j.ecmx.2022.100188

T. Haisch, H. Ji, C. Weidlich, Monitoring the state of charge of all-vanadium redox flow batteries to identify crossover of electrolyte, Electrochimica Acta 336 (2020) 135573. https://doi.org/10.1016/j.electacta.2019.135573

T. Haisch, H. Ji, L. Holtz, T. Struckmann, C. Weidlich, Half cell State of Charge Monitoring for Determination of Crossover in VRFB—Considerations and Results Concerning Crossover Direction and Amount, Membranes 11 (2021) 232. https://doi.org/10.3390/membranes11040232

L. Wei, T. S. Zhao, Q. Xu, X. L. Zhou, Z. H. Zhang, In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries, Applied Energy 190 (2017) 1112–1118. https://doi.org/10.1016/j.apenergy.2017.01.039

H. Al-Fetlawi, A. A. Shah, F. C. Walsh, Modelling the effects of oxygen evolution in the all-vanadium redox flow battery, Electrochimica Acta 55 (2010) 3192–3205. https://doi.org/10.1016/j.electacta.2009.12.085

Q. Luo, L. Li, W. Wang, Z. Nie, X. Wei, B. Li, B. Chen, Z. Yang, V. Sprenkle, Capacity Decay and Remediation of Nafion-based All-Vanadium Redox Flow Batteries, ChemSusChem 6 (2013) 268–274. https://doi.org/10.1002/cssc.201200730

M. Skyllas-Kazacos, M. Kazacos, State of charge monitoring methods for vanadium redox flow battery control, Journal of Power Sources 196 (2011) 8822–8827. https://doi.org/10.1016/j.jpowsour.2011.06.080

S. Ressel, F. Bill, L. Holtz, N. Janshen, A. Chica, T. Flower, C. Weidlich, T. Struckmann, State of charge monitoring of vanadium redox flow batteries using half cell potentials and electrolyte density, Journal of Power Sources 378 (2018) 776–783. https://doi.org/10.1016/j.jpowsour.2018.01.006

T. Struckmann, P. Kuhn, S. Ressel, A combined in situ monitoring approach for half cell state of charge and state of health of vanadium redox flow batteries, Electrochimica Acta 362 (2020) 137174. https://doi.org/10.1016/j.electacta.2020.137174

J. Geiser, H. Natter, R. Hempelmann, B. Morgenstern, K. Hegetschweiler, Photometrical Determination of the State-of-Charge in Vanadium Redox Flow Batteries Part I: In Combination with Potentiometric Titration, Zeitschrift für Physikalische Chemie 233 (2019) 1683–1694. https://doi.org/10.1515/zpch-2019-1379

J. Geiser, H. Natter, R. Hempelmann, B. Morgenstern, K. Hegetschweiler, Photometrical Determination of the State-of-Charge in Vanadium Redox Flow Batteries Part II: In Combination with Open-Circuit-Voltage, Zeitschrift für Physikalische Chemie 233 (2019) 1695–1711. https://doi.org/10.1515/zpch-2019-1380

N. Quill, C. Petchsingh, R. P. Lynch, X. Gao, D. Oboroceanu, D. Ní Eidhin, M. O’Mahony, C. Lenihan, D. N. Buckley, Factors Affecting Spectroscopic State-of-Charge Measurements of Positive and Negative Electrolytes in Vanadium Redox Flow Batteries, ECS Transactions 64 (2015) 23–39. https://doi.org/10.1149/06418.0023ecst

D. N. Buckley, X. Gao, R. P. Lynch, N. Quill, M. J. Leahy, Towards Optical Monitoring of Vanadium Redox Flow Batteries (VRFBs): An Investigation of the Underlying Spectroscopy, Journal of The Electrochemical Society 161 (2014) A524–A534. https://doi.org/10.1149/2.023404jes

X. Li, J. Xiong, A. Tang, Y. Qin, J. Liu, C. Yan, Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery, Applied Energy 211 (2018) 1050–1059. https://doi.org/10.1016/j.apenergy.2017.12.009

M. Schilling, M. Braig, K. Köble, R. Zeis, Investigating the V(IV)/V(V) electrode reaction in a vanadium redox flow battery – A distribution of relaxation times analysis, Electrochimica Acta 430 (2022) 141058. https://doi.org/10.1016/j.electacta.2022.141058

C. Stolze, J. P. Meurer, M. D. Hager, U. S. Schubert, An Amperometric, Temperature-Independent, and Calibration-Free Method for the Real-Time State-of-Charge Monitoring of Redox Flow Battery Electrolytes, Chemistry of Materials 31 (2019) 5363–5369. https://doi.org/10.1021/acs.chemmater.9b02376

C. Stolze, M. D. Hager, U. S. Schubert, State-of-charge monitoring for redox flow batteries: A symmetric open-circuit cell approach, Journal of Power Sources 423 (2019) 60–67. https://doi.org/10.1016/j.jpowsour.2019.03.002

B. J. Neyhouse, K. M. Tenny, Y.-M. Chiang, F. R. Brushett, Microelectrode-Based Sensor for Measuring Operando Active Species Concentrations in Redox Flow Cells, ACS Applied Energy Materials 4 (2021) 13830–13840. https://doi.org/10.1021/acsaem.1c02580

P. M. Spaziante, M. Dichand, Estimation of the state of charge of a positive electrolyte solution of a working redox flow battery cell without using any reference electrode, Patent No. WO2014184617, 2013.

G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Zeitschrift für Physik 155 (1959) 206–222. https://doi.org/10.1007/BF01337937 (in German)

F. Tan, D.-Y. Qiu, L.-P. Guo, P. Ye, H. Zeng, J. Jiang, Y. Tang, Y.-C. Zhang, Separate density and viscosity measurements of unknown liquid using quartz crystal microbalance, AIP Advances 6 (2016) 095313. https://doi.org/10.1063/1.4963298

S. Yenuganti, C. Zhang, H. Zhang, Quartz Crystal Microbalance for viscosity measurement with temperature self-compensation, Mechatronics 59 (2019) 189–198. https://doi.org/10.1016/j.mechatronics.2019.04.005

Y. Ji, Z.-W. Yin, Z. Yang, Y.-P. Deng, H. Chen, C. Lin, L. Yang, K. Yang, M. Zhang, Q. Xiao, J.-T. Li, Z. Chen, S.-G. Sun, F. Pan, From bulk to interface: electrochemical phenomena and mechanism studies in batteries via electrochemical quartz crystal microbalance, Chemical Society Reviews 50 (2021) 10743–10763. https://doi.org/10.1039/D1CS00629K

A. M. Cao-Paz, L. Rodríguez-Pardo, J. Fariña, J. Marcos-Acevedo, Resolution in QCM Sensors for the Viscosity and Density of Liquids: Application to Lead Acid Batteries, Sensors 12 (2012) 10604–10620. https://doi.org/10.3390/s120810604

Downloads

Published

31-05-2023 — Updated on 31-03-2023

How to Cite

Weidlich, C., Lulay, F., & Wieland, M. (2023). Feasibility study of amperometric and electrochemical quartz crystal microbalance measurements for in situ state of charge monitoring in vanadium flow batteries: Short communication. Journal of Electrochemical Science and Engineering, 13(5), 739–751. https://doi.org/10.5599/jese.1699

Issue

Section

8th RSE SEE & 9th Kurt Schwabe symposium Special Issue