Self-assembling nanomaterial-based peptide surface for target cell adhesion

Original scientific paper


  • Hasret Turkmen Izmir Biomedicine and Genome Center, Balcova 35340, Izmir, Turkey; Department of Biochemistry, Ege University, Izmir, Turkey and Job and Vocational Counselor, Turkish Employment Agency, Izmir, Turkey



Screen-printed carbon electrode (SPCE), gold nanoparticles, biofunctionalization, cell lines
Graphical Abstract


Non-covalent modification of electrode surfaces with nanoparticle-based peptides does not change the chemical properties of the electrode but allows electrochemical measurement of cell adhesion. This study examines the effect of self-modified nanomaterial/peptide surfaces on cell adhesion. This adhesion to the surface is caused by the negative Gibs free energy formed in the system because of the presence of -0H, sulfur, carbonyl, or reactive groups. A cheaper and more practical method for electrode surfaces targeting cell adhesion, which does not use heavy chemicals and EDC/NHS chemistry, is used in this work. Thanks to the bioactive materials immobilized on the screen-printed carbon electrode (SPCE) surface in a controlled manner and the surface chemistry offered by these materials, a biocompatible self-assembling nanomaterial-based peptide surface platform is created, and cell adhesion is measured by an electrochemical technique. After the characterization steps, electro­chemical techniques created a calibration curve of the current value as a function of concentration for each cell line. The adhesion of the generated bioactive electrode surfaces to the selected cell lines was examined comparatively.


Download data is not yet available.


J. Yu, M. L. Becker, G. A. Carri, The influence of Amino Acid Sequence and Functionality on the Binding Process of Peptides onto Gold Surfaces, Langmuir 28(2) (2012) 1408-1417.

C. M. Niemeyer, Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science, Angewandte Chemie International Edition 40(22) (2001) 4128-4158.<4128::AID-ANIE4128>3.0.CO;2-S

S. Tatematsu, T. Ohnishi, S. Saito, M. Tanaka, Y. Hayamizu,M. Okochi, Assemblies of Bi-functional Peptides on Pyrolytic Graphite for Cell Adhesion, Biochemical Engineering Journal 170 (2021) 107988.

Y. Zhang, R. Huang, X. Zhu, L. Wang, C. Wu, Synthesis, Properties, and Optical Applications of Noble Metal Nanoparticle-Biomolecule Conjugates, Chinese Science Bulletin 57(2) (2012) 238-246.

J. Meissner, A. Prause, B. Bharti, G.H. Findenegg, Characterization of Protein Adsorption onto Silica Nanoparticles: Influence of pH and Ionic Strength, Colloid and Polymer Science 293(2015) 3381- 3391.

H. K. Chan, P. C. L. Kwok, Production Methods for Nanodrug Particles Using the Bottom-up Approach, Advanced Drug Delivery Reviews 63(6) (2011) 406-416.

M. De, P.S. Ghosh, V.M. Rotello, Applications of Nanoparticles in Biology, Advanced Materials 20(22) (2008) 4225-4241.

R. S. Ingram, M. J. Hostetler, R. W. Murray, Poly-Hetero-Ω-Functionalized Alkanethiolate-Stabilized Gold Cluster Compounds, Journal of the American Chemical Society 119(39) (1997) 9175-9178.

A. C. Templeton, W. P. Wuelfing, R. W. Murray, Monolayer-Protected Cluster Molecules, Accounts of Chemical Research 33(1) (2000) 27-36.

F. Porta, G. Speranza, Ž. Krpetić, V. Dal Santo, P. Francescato, G. Scari, Gold Nanoparticles Capped By Peptides, Materials Science and Engineering: B 140(3) (2007) 187-194.

C. L. Chen, P. Zhang, N. L. Rosi, A New Peptide-Based Method for The Design and Synthesis of Nanoparticle Superstructures: Construction of Highly Ordered Gold Nanoparticle Double Helices, Journal of the American Chemical Society 130(41) (2008) 13555-13557.

Y. Sun, Y. Luo, L. Sun, X.-R. Wang, L.-W. Chen, N. Zhang, Y. Wang, L.-Y. Dong, H. Guo, X.-H. Wang, Improving Performance of Cell Imprinted PDMS by Integrating Boronate Affinity and Local Post-Imprinting Modification for Selective Capture of Circulating Tumor Cells From Cancer Patients, Biosensors and Bioelectronics 223 (2023) 115023.

C. M. Welch, R. G. Compton, The Use of Nanoparticles in Electroanalysis, Analytical and Bio¬analytical Chemistry 384(3) (2006) 601-619.

A. Bolhassani, Potential Efficacy Of Cell-Penetrating Peptides for Nucleic Acid and Drug Delivery in Cancer, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1816(2) (2011) 232-246.

E. Koren, V. P. Torchilin, Cell-Penetrating Peptides: Breaking Through to the Other Side, Trends in Molecular Medicine 18(7) (2012) 385-393.

S. Pacheco, T. Kanou, S. Y. Fung, K. Chen, D. Lee, X. Bai, S. Keshavjee, M. Liu, Formulation of Hydrophobic Therapeutics with Self-Assembling Peptide and Amino Acid: A New Platform for Intravenous Drug Delivery, Journal of Controlled Release 239 (2016) 211-222.

Q. Ning, Q. Chen, Y. Huang, Y. Wang, Y. Wang & Z. Liu, Development of a Hg2+-Stabilized Double-Stranded DNA Probe for Low-Cost Visual Detection of Glutathione in Food Based on G-Quadruplex/hemin DNAzymes, Journal of Analytical Chemistry 77 (2022) 1517-1525.

J. Pronk, R. Meulenberg, W. Hazeu, P. Bos, J. Kuenen, Oxidation of Reduced Inorganic Sulphur Compounds by Acidophilic Thiobacilli, FEMS Microbiology Letters 75(2-3) (1990) 293-306.

H. Tang, J. Chen, L. Nie, Y. Kuang, S. Yao, A Label-Free Electrochemical Immunoassay for Carcinoembryonic antigen (CEA) Based on Gold Nanoparticles (AuNPs) and Nonconductive Polymer Film, Biosensors and Bioelectronics 22(6) (2007) 1061-1067.

J. F. Rusling, G. Sotzing, F. Papadimitrakopoulosa, Designing Nanomaterial-Enhanced Electrochemical Immunosensors for Cancer Biomarker Proteins, Bioelectrochemistry

(1-2) (2009) 189-194.

D. Sun, J. Lu, D. Chen, Y. Jiang, Z. Wang, W. Qin, Y. Yu, Z. Chen, Y. Zhang, Label-Free Electro¬chemical Detection of Hepg2 Tumor Cells with a Self-Assembled DNA Nanostructure-Based Aptasensor, Sensors and Actuators B 268 (2018) 359-367.

Q. Han, X. Shen, W. Zhu, C. Zhu, X. Zhou, H. Jiang, Magnetic Sensing Film Based on Fe3O4@Au-GSH Molecularly Imprinted Polymers for The Electrochemical Detection of Estradiol, Biosensors and Bioelectronics 79 (2016) 180-186.

V. Spampinato, M. A. Parracino, R. La Spina, F. Rossi, G. Ceccone, Surface Analysis of Gold Nanoparticles Functionalized with Thiol-Modified Glucose SAMs for Biosensor Applications, Frontiers in Chemistry 4 (2016) 8.

S. H. Mejias, P. Couleaud, S. Casado, D. Granados, M. A. Garcia, J. M. Abad, A. L. Cortajarena, Assembly of Designed Protein Scaffolds into Monolayers for Nanoparticle Patterning, Colloids and Surfaces B 141 (2016) 93-101.

F. Bellia, G. Vecchio, E. Rizzarelli, Carnosine Derivatives: New Multifunctional Drug-Like Molecules, Amino Acids 43(1) (2012) 153-163.

I. W. Hamley, Small Bioactive Peptides for Biomaterials Design and Therapeutics, Chemical Reviews 117(24) (2017) 14015-14041.

D. Li, Y. Dong, B. Li, Y. Wu, K. Wang, S. Zhang, Colorimetric Sensor Array with Unmodified Noble Metal Nanoparticles for Naked-Eye Detection of Proteins and Bacteria, Analyst 140(22) (2015) 7672-7677.

Z. Durmus, H. Kavas, A. Baykal, H. Sozeri, L. Alpsoy, S. Çelik,M. Toprak, Synthesis and Characterization of l-Carnosine Coated Iron Oxide Nanoparticles, Journal of Alloys and Compounds 509(5) (2011) 2555-2561.

M. Pandurangan, G. Enkhtaivan, D.H. Kim, Therapeutic Efficacy of Natural Dipeptide Carnosine Against Human Cervical Carcinoma Cells, Journal of Molecular Recognition 29(9) (2016) 426-435.

A. R. Hipkiss, Ageing and Carnosine: Are Carnivorous Diets Beneficial?, Mechanisms of Ageing and Development 126(10) (2005) 1034-1039.

M. Gatchell, M. Goulart, L. Kranabetter, M. Kuhn, P. Martini, B. Rasul, P. Scheier, P. Scheier, Complexes of Gold and Imidazole Formed in Helium Nanodroplets, Physical Chemistry Chemical Physics 20(11) (2018) 7739-7745.

D. J. Hill, Relationships of Insulin-Like Growth Factors and Their Binding Proteins to Embryonic Development, Journal of Animal Science 74(suppl_2) (1996) 85-93.

J. R. Florini, D. Z. Ewton, S. A. Coolican, Growth Hormone and the Insulin-Like Growth Factor System in Myogenesis, Endocrine Reviews 17(5) (1996) 481-517.

R. Kooijman, E. Himpe, S. Potikanond, A. Coppens, Regulation of Interleukin-8 Expression in Human Prostate Cancer Cells by Insulin-Like Growth Factor-I and Inflammatory Cytokines, Growth Hormone & IGF Research 17(5) (2007) 383-391.

L. A. Bach, M. M. Rechler, The Insulin-like Growth Factor System: Towards Clinical Applications, Diabetes/Metabolism Reviews 8(3) (1992) 229-257.

B. Rezaei, N. Majidi, H. Rahmani, T. Khayamian, Electrochemical Impedimetric Immunosensor for Insulin-Like Growth Factor-1 Using Specific Monoclonal Antibody-Nanogold Modified Electrode, Biosensors and Bioelectronics 26(5) (2011) 2130-2134.

M. Yin, X. Guan, Z. Liao, Q. Wei, Insulin-Like Growth Factor-1 Receptor-Targeted Therapy for Non-Small Cell Lung Cancer: A Mini Review, American Journal of Translational Research 1(2) (2009) 101.

C. Wang, Y. An, Y. Wang, K. Shen, X. Wang, W. Luan, F. Ma,L. Ni, M. Liu, L. Yu, Insulin-Like Growth Factor-I Activates Nfκb And NLRP3 Inflammatory Signalling Via ROS In Cancer Cells, Molecular and Cellular Probes 52 (2020) 101583.

J. J. Castillo, W. E. Svendsen, N. Rozlosnik, P. Escobar, F. Martínez, J.Castillo-León, Detection of Cancer Cells Using A Peptidenanotube-Folic Acid Modified Graphene Electrode, Analyst 138(4) (2013) 1026-1031.

A. Ghahremaninezhad, D. Dixon, E. Asselin, Electrochemical And XPS Analysis Of Chalcopyrite (Cufes2) Dissolution In Sulfuric Acid Solution, Electrochimica Acta 87 (2013) 97-112.

T. Matsukura, T. Takahashi, Y. Nishimura, T. Ohtani, M. Sawada, K. Shibata, Characterization of Crystalline L-Carnosine Zn(II) Complex (Z-103), A Novel Anti-Gastric Ulcer Agent : Tautomeric Change of Imidazole Moiety Upon Complexation, Chemical and Pharmaceutical Bulletin 38(11) (1990) 3140-3146.

B. Pelaz, V. Grazu, A. Ibarra, C. Magen, P. del Pino, J.M. de la Fuente, Tailoring the Synthesis and Heating Ability of Gold Nanoprisms for Bioapplications, Langmuir 28(24) (2012) 8965-8970.

D. Ito, T. Kado, F. Nagano-Takebe, T. Hidaka, K. Endo, Y. Furuichi, Biological Activation of Zirconia Surfaces by Chemical Modification With IGF-1, Journal of Biomedical Materials Research A 103(11) (2015) 3659-3665.

L. Zhang, Z. Wang, J. Das, M. Labib, S. Ahmed, E.H. Sargent, S.O. Kelley, Potential-Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation, Angewandte Chemie International Edition 58(41) (2019) 14519-14523.

J. Yu, P. Zhang, T. Chen, Q. Lv, L. Gao, B. Liu, J. Duan, Z. Wu, J. Li, Construction of Flexible and Wearable 3D TiO2 NTs@Ti Mesh for Physiological Detection Based on Sweat, JCIS Open 2 (2021) 100007.

C. Meng, X. Zhi, C. Li, C. Li, Z. Chen, X. Qiu, C. Ding, L. Ma,H. Lu, D. Chen, G. Liu, D. Cui, Graphene Oxides Decorated with Carnosine as an Adjuvant to Modulate Innate Immune and Improve Adaptive Immunity In Vivo, ACS Nano 10(2) (2016) 2203-2213.

X. Y. Ge, Y. G. Feng, S. Y. Cen, A. J. Wang, L. P. Mei, X. Luo, J. J. Feng, A Label-Free Electrochemical Immnunosensor Based on Signal Magnification of Oxygen Reduction Reaction Catalyzed by Uniform PtCo Nanodendrites for Highly Sensitive Detection of Carbohydrate Antigen 15-3, Analytica Chimica Acta 1176 (2021) 338750.

L. Liu, X. Zhu, D. Zhang, J. Huang, G. Li, An Electrochemical Method to Detect Folate Receptor Positive Tumor Cells, Electrochemistry Communications 9(10) (2007) 2547-2550.

R. Wang, J. Di, J. Ma, Z. Ma, Highly Sensitive Detection Of Cancer Cells By Electrochemical Impedance Spectroscopy, Electrochimica Acta 61 (2012) 179-184.

X. Lv, W. Ge, Q. Li, Y. Wu, H. Jiang, X. Wang, Rapid and Ultrasensitive Electrochemical Detection of Multidrug-Resistant Bacteria Based on Nanostructured Gold Coated ITO Electrode, ACS Applied Materials & Interfaces 6(14) (2014) 11025-11031.

F. Tulli, F. A. Gulotta, D. M. Martino, V. I. P. Zanini, C. D. Borsarelli, Ultrasensitive Amperometric Biosensing of Polyphenols Using Horseradish Peroxidase Immobilized in a Laponite/Au/DNA-Bioinspired Polycation Nanocomposite, Journal of The Electrochemical Society 165(10) (2018) B452.

S. Sandeep, A. S. Santhosh, N. K. Swamy, G. S. Suresh, J. S. Melo, N. A. Chamaraja, A Bio-sensor Based on a Graphene Nanoribbon/Silver Nanoparticle/Polyphenol Oxidase Compo-site Matrix on a Graphite Electrode: Application in the Analysis Of Catechol in Green Tea Samples, New Journal of Chemistry 42(20) (2018) 16620-16629.



18-04-2023 — Updated on 18-04-2023

How to Cite

Turkmen, H. (2023). Self-assembling nanomaterial-based peptide surface for target cell adhesion: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(3), 491–504.