Impact of carbon coating processing using sucrose for thick binder-free titanium niobium oxide lithium-ion battery anode
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1655Keywords:
Electronic conductivity, mechanical stability , cycle life, discharge voltage, rate capabilityAbstract
Lithium-ion batteries are increasingly important for providing energy storage solutions. In the drive to improve the energy density at the cell level, optimizing the electrode architecture is crucial in addition to researching new materials. Binder-free (BF) electrodes include porous pellets only containing battery electroactive materials. These electrodes can provide advantages with regard to mechanical stability and alleviated ion transport limitations relative to composite approaches for very thick and energy-dense electrodes. However, the absence of conductive additives often limits suitable material candidates for BF battery electrodes. TiNb2O7 (TNO) is a promising BF electrode material from a gravimetric and volumetric capacity standpoint, but phase pure TNO has relatively low electronic conductivity. Herein, a sucrose precursor coating method for TNO materials was implemented to process the TNO materials into BF electrodes. The sucrose served as a source to generate carbon in the electrodes, where the carbon coating resulted in an increase in rate capability, discharge voltage, and cycle life.
Downloads
References
J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359-367. https://doi.org/10.1038/35104644
M. Pemble, I. Povey, D. Vernardou, Atomic layer deposited V2O5 coatings: A promising cathode for li-ion batteries, Journal of Electrochemical Science and Engineering 10 (2020) 21-28. https://doi.org/10.5599/jese.708
C. Cai, H. Dong, G. M. Koenig, Anisotropic particle synthesis and characterization for lithium-ion battery electrode materials via precursor precipitate growth inhibitor, Powder Technology 394 (2021) 214-224. https://doi.org/10.1016/j.powtec.2021.08.060
H. Dong, G.M. Koenig, Compositional control of precipitate precursors for lithium-ion battery active materials: Role of solution equilibrium and precipitation rate, Journal of Materials Chemistry A 5 (2017) 13785-13798. https://doi.org/10.1039/c7ta03653a
M. Ebner, D. W. Chung, R. E. García, V. Wood, Tortuosity anisotropy in lithium-ion battery electrodes, Advanced Energy Materials 4 (2014) 1-6. https://doi.org/10.1002/aenm.201301278
K. G. Gallagher, S. E. Trask, C. Bauer, T. Woehrle, S. F. Lux, M. Tschech, P. Lamp, B. J. Polzin, S. Ha, B. Long, Q. Wu, W. Lu, D. W. Dees, A. N. Jansen, Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes, Journal of The Electrochemical Society 163 (2016) A138-A149. https://doi.org/10.1149/2.0321602jes
C. Cai, D. Hensley, G. M. Koenig, Simulated discharge overpotential distributions for sintered electrode batteries in rechargeable coin cell form factors, Journal of Energy Storage 54 (2022) 105218. https://doi.org/10.1016/j.est.2022.105218
A. Mistry, S. Trask, A. Dunlop, G. Jeka, B. Polzin, P. P. Mukherjee, V. Srinivasan, Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes, Journal of The Electrochemical Society 168 (2021) 070536. https://doi.org/10.1149/1945-7111/ac1033
J. Lindberg, H. Lundgren, G. Lindbergh, M. Behm, Benchmarking of electrolyte mass transport in next generation lithium batteries, Journal of Electrochemical Science and Engineering 7 (2017) 213-221. https://doi.org/10.5599/jese.408
J. Wu, Z. Ju, X. Zhang, C. Quilty, K. J. Takeuchi, D. C. Bock, A. C. Marschilok, E. S. Takeuchi, G. Yu, Ultrahigh-Capacity and Scalable Architected Battery Electrodes via Tortuosity Modulation, ACS Nano 15 (2021) 19109-19118. https://doi.org/10.1021/acsnano.1c06491
M. Armand, P. Axmann, D. Bresser, M. Copley, K. Edström, C. Ekberg, D. Guyomard, B. Lestriez, P. Novák, M. Petranikova, W. Porcher, S. Trabesinger, M. Wohlfahrt-Mehrens, H. Zhang, Lithium-ion batteries - Current state of the art and anticipated developments, Journal of Power Sources 479 (2020). https://doi.org/10.1016/j.jpowsour.2020.22870
S. Yan, S. Luo, J. Feng, P. Li, R. Guo, Q. Wang, Y. Zhang, Y. Liu, S. Bao, Rational design of flower-like FeCo2S4/reduced graphene oxide films: Novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor, Chemical Engineering Journal 381 (2020) 122695. https://doi.org/10.1016/j.cej.2019.122695
A. Abouimrane, O. C. Compton, K. Amine, S. T. Nguyen, Non-annealed graphene paper as a binder-free anode for lithium-ion batteries, Journal of Physical Chemistry C 114 (2010) 12800-12804. https://doi.org/10.1021/jp103704y
Z. X. Huang, Y. Wang, Y. G. Zhu, Y. Shi, J. I. Wong, H. Y. Yang, 3D graphene supported MoO2 for high performance binder-free lithium ion battery, Nanoscale 6 (2014) 9839-9845. https://doi.org/10.1039/c4nr01744g
R. Elango, A. Nadeina, F. Cadiou, V. Andrade, A. Demortière, M. Morcrette, V. Seznec, Impact of electrode porosity architecture on electrochemical performances of 1 mm-thick LiFePO4 binder-free Li-ion electrodes fabricated by Spark Plasma Sintering, Journal of Power Sources 488 (2021) 229402. https://doi.org/10.1016/j.jpowsour.2020.229402
J. Li, T. Zhang, C. Han, H. Li, R. Shi, J. Tong, B. Li, Crystallized lithium titanate nanosheets prepared: Via spark plasma sintering for ultra-high rate lithium ion batteries, Journal of Materials Chemistry A 7 (2019) 455-460. https://doi.org/10.1039/c8ta10680k
B. Delattre, R. Amin, J. Sander, J. De Coninck, A. P. Tomsia, Y. M. Chiang, Impact of Pore Tortuosity on Electrode Kinetics in Lithium Battery Electrodes: Study in Directionally Freeze-Cast LiNi0.8Co0.15Al0.05O2(NCA), Journal of The Electrochemical Society 165 (2018) A388-A395. https://doi.org/10.1039/c8ta10680k
C. Cai, G. M. Koenig, Investigating Dopants to Improve Sintered LiMn2O4 Spinel Electrode Electrochemical Cycling Limitations, Electrochimica Acta 401 (2021) 139484. https://doi.org/10.1016/j.electacta.2021.139484
J. P. Robinson, J. J. Ruppert, H. Dong, G. M. Koenig, Sintered electrode full cells for high energy density lithium-ion batteries, Journal of Applied Electrochemistry 48 (2018) 1297-1304. https://doi.org/10.1007/s10800-018-1242-y
Z. Nie, S. Ong, D. S. Hussey, J. M. Lamanna, D. L. Jacobson, G. M. Koenig, Probing transport limitations in thick sintered battery electrodes with neutron imaging, Molecular Systems Design and Engineering 5 (2020) 245-256. https://doi.org/10.1039/c9me00084d
Z. Nie, P. McCormack, H. Z. Bilheux, J. C. Bilheux, J. P. Robinson, J. Nanda, G.M. Koenig, Probing lithiation and delithiation of thick sintered lithium-ion battery electrodes with neutron imaging, Journal of Power Sources 419 (2019) 127-136. https://doi.org/10.1016/j.jpowsour.2019.02.075
C. Cai, Z. Nie, J. P. Robinson, D. S. Hussey, J. M. LaManna, D. L. Jacobson, G. M. Koenig, Thick Sintered Electrode Lithium-Ion Battery Discharge Simulations: Incorporating Lithiation-Dependent Electronic Conductivity and Lithiation Gradient Due to Charge Cycle, Journal of the Electrochemical Society 167 (2020) 140542. https://doi.org/10.1149/1945-7111/abc747
Z. Nie, R. Parai, C. Cai, C. Michaelis, J. M. LaManna, D. S. Hussey, D. L. Jacobson, D. Ghosh, G. M. Koenig, Pore Microstructure Impacts on Lithium Ion Transport and Rate Capability of Thick Sintered Electrodes, Journal of The Electrochemical Society 168 (2021) 060550. https://doi.org/10.1149/1945-7111/ac0bf6
Z. Nie, R. Parai, C. Cai, D. Ghosh, G. M. Koenig, Improving high rate cycling limitations of thick sintered battery electrodes by mitigating molecular transport limitations through modifying electrode microstructure and electrolyte conductivity, Molecular Systems Design and Engineering 6 (2021) 708-712. https://doi.org/10.1039/d1me00082a
C. Cai, Z. Nie, G. M. Koenig, Multicomponent two-layered cathode for thick sintered lithium-ion batteries, Materials Advances (2022) 4200-4212. https://doi.org/10.1039/d1ma01074c
D. Young, A. Ransil, R. Amin, Z. Li, Y. M. Chiang, Electronic conductivity in the Li4/3Ti5/3O4-Li7/3Ti5/3O4 system and variation with state-of-charge as a Li battery anode, Advanced Energy Materials 3 (2013) 1125-1129. https://doi.org/10.1002/aenm.201300134
M. Menetrier, I. Saadoune, S. Levasseur, C. Delmas, The insulator–metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study, Journal of Materials Chemistry 9 (1999) 1135-1140. https://doi.org/10.1039/A900016J
S. Levasseur, M. Ménétrier, E. Suard, C. Delmas, Evidence for structural defects in non-stoichiometric HT-LiCoO2: electrochemical, electronic properties and 7Li NMR studies, Solid State Ionics 128 (2000) 11-24. https://doi.org/10.1016/S0167-2738(99)00335-5
K. Ise, S. Morimoto, Y. Harada, N. Takami, Large lithium storage in highly crystalline TiNb2O7 nanoparticles synthesized by a hydrothermal method as anodes for lithium-ion batteries, Solid State Ionics 320 (2018) 7-15. https://doi.org/10.1016/j.ssi.2018.02.027
D. P. Finegan, A. Quinn, D. S. Wragg, A. M. Colclasure, X. Lu, C. Tan, T. M. M. Heenan, R. Jervis, D. J. L. Brett, S. Das, T. Gao, D. A. Cogswell, M. Z. Bazant, M. Di Michiel, S. Checchia, P. R. Shearing, K. Smith, Spatial dynamics of lithiation and lithium plating during high-rate operation of graphite electrodes, Energy and Environmental Science 13 (2020) 2570-2584. https://doi.org/10.1039/d0ee01191f
S. Schweidler, L. De Biasi, A. Schiele, P. Hartmann, T. Brezesinski, J. Janek, Volume Changes of Graphite Anodes Revisited: A Combined Operando X-ray Diffraction and in Situ Pressure Analysis Study, Journal of Physical Chemistry C 122 (2018) 8829-8835. https://doi.org/10.1021/acs.jpcc.8b01873
S. Frisco, A. Kumar, J. F. Whitacre, S. Litster, Understanding Li-Ion Battery Anode Degradation and Pore Morphological Changes through Nano-Resolution X-ray Computed Tomography, Journal of The Electrochemical Society 163 (2016) A2636-A2640. https://doi.org/10.1149/2.0681613jes
K. J. Griffith, I. D. Seymour, M. A. Hope, M. M. Butala, L. K. Lamontagne, M. B. Preefer, C. P. Koçer, G. Henkelman, A. J. Morris, M. J. Cliffe, S. E. Dutton, C. P. Grey, Ionic and Electronic Conduction in TiNb2O7, Journal of the American Chemical Society 141 (2019) 16706-16725. https://doi.org/10.1021/jacs.9b06669
L. Zhao, S. Wang, Y. Dong, W. Quan, F. Han, Y. Huang, Y. Li, X. Liu, M. Li, Z. Zhang, J. Zhang, Z. Tang, J. Li, Coarse-grained reduced MoxTi1−xNb2O7+y anodes for high-rate lithium-ion batteries, Energy Storage Materials 34 (2021) 574-581. https://doi.org/10.1016/j.ensm.2020.10.016
W. Zhu, B. Zou, C. Zhang, D. H. L. Ng, S. A. El-Khodary, X. Liu, G. Li, J. Qiu, Y. Zhao, S. Yang, J. Lian, H. Li, Oxygen-Defective TiNb2O7-x Nanochains with Enlarged Lattice Spacing for High-Rate Lithium Ion Capacitor, Advanced Materials Interfaces 7 (2020) 2000705. https://doi.org/10.1002/admi.202000705
J. Gao, X. Cheng, S. Lou, Y. Ma, P. Zuo, C. Du, Y. Gao, G. Yin, Self-doping Ti1-xNb2+xO7 anode material for lithium-ion battery and its electrochemical performance, Journal of Alloys and Compounds 728 (2017) 534-540. https://doi.org/10.1016/j.jallcom.2017.09.045
J. T. Han, J. B. Goodenough, 3-V Full Cell Performance of Anode Framework TiNb2O7/Spinel LiNi0.5Mn1.5O4, Chemistry of Materials 23 (2011) 3404-3407. https://doi.org/10.1021/cm201515g
A. A. Voskanyan, K. Jayanthi, A. Navrotsky, Vacancy Control in TiNb2O7: Implications for Energy Applications, Chemistry of Materials 34 (2022) 10311-10319. https://doi.org/10.1021/acs.chemmater.2c01569
A. Nyman, M. Behm, G. Lindbergh, Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6-EC-EMC electrolyte, Electrochimica Acta 53 (2008) 6356-6365. https://doi.org/10.1016/j.electacta.2008.04.023
G. M. Koenig, J. Ma, B. Key, J. Fink, K. Bin Low, R. Shahbazian-Yassar, I. Belharouak, Compo-site of LiFePO4 with titanium phosphate phases as lithium-ion battery electrode material, Journal of Physical Chemistry C 117 (2013) 21132-21138. https://doi.org/10.1021/jp4074174
A. Saleem, M. K. Majeed, S. I. Niaz, M. Iqbal, M. Akhlaq, M. Z. Ashfaq, Y. Zhang, H. Gong, Nickel doped copper ferrite NixCu1−xFe2O4 for a high crystalline anode material for lithium ion batteries, New Journal of Chemistry 45 (2021) 1456-1462. https://doi.org/10.1039/D0NJ04429F
Z. X. Chi, W. Zhang, F. Q. Cheng, J. T. Chen, A. M. Cao, L. J. Wan, Optimizing the carbon coating on LiFePO4 for improved battery performance, RSC Advances 4 (2014) 7795-7798. https://doi.org/10.1039/c3ra47702a
D. Gupta, C. Cai, G. M. Koenig, Comparative Analysis of Chemical Redox between Redox Shuttles and a Lithium-Ion Cathode Material via Electrochemical Analysis of Redox Shuttle Conversion, Journal of The Electrochemical Society 168 (2021) 050546. https://doi.org/10.1149/1945-7111/ac0068
D. Zuo, C. Wang, G. Tian, K. Shu, X. Liu, Comparative study of Al2O3, SiO2 and TiO2-coated LiNi0.6Co0.2Mn0.2O2 electrode prepared by hydrolysis coating technology, Journal of Electrochemical Science and Engineering. 9 (2019) 85-97. https://doi.org/10.5599/jese.624.
B. L. Cushing, J. B. Goodenough, Influence of carbon coating on the performance of a LiMn0.5Ni0.5O2 cathode, Solid State Sciences 4 (2002) 1487-1493. https://doi.org/10.1016/S1293-2558(02)00044-4
J. T. Han, Y. H. Huang, J. B. Goodenough, New anode framework for rechargeable lithium batteries, Chemistry of Materials 23 (2011) 2027-2029. https://doi.org/10.1021/cm200441h
J. Yang, B. Yan, J. Ye, X. Li, Y. Liu, H. You, Carbon-coated LiCrTiO4 electrode material pro-mo¬ting phase transition to reduce asymmetric polarization for lithium-ion batteries, Physical Chemistry Chemical Physics 16 (2014) 2882-2891. https://doi.org/10.1039/c3cp54399d
H. Y. Lee, J. K. Baek, S. W. Jang, S. M. Lee, S. T. Hong, K. Y. Lee, M. H. Kim, Characteristics of carbon-coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries, Journal of Power Sources 101 (2001) 206-212. https://doi.org/10.1016/S0378-7753(01)00671-1
T. Yang, N. Zhang, Y. Lang, K. Sun, Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium ion batteries, Electrochimica Acta 56 (2011) 4058-4064. https://doi.org/10.1016/j.electacta.2010.12.109
V. Pavitra, I. Soni, B. M. Praveen, G. Nagaraju, Brief review on carbon derivatives based ternary metal oxide composite electrode materials for lithium-ion batteries, Journal of Electrochemical Science and Engineering 14(3) (2023) 605-640. https://doi.org/10.5599/jese.1470
R. Parai, N. B. Gundrati, S. Akurati, G. M. Koenig, D. Ghosh, Microstructure in the transition region and steady-state region of ice-templated sintered lithium titanate Li4Ti5O12 materials fabricated with and without sucrose, Journal of Materials Research 36 (2021) 3519-3538. https://doi.org/10.1557/s43578-021-00367-3
L. Perfler, V. Kahlenberg, C. Wikete, D. Schmidmair, M. Tribus, R. Kaindl, Nanoindentation, High-Temperature Behavior, and Crystallographic/Spectroscopic Characterization of the High-Refractive-Index Materials TiTa2O7 and TiNb2O7, Inorganic Chemistry 54 (2015) 6836-6848. https://doi.org/10.1021/acs.inorgchem.5b00733
R. Tao, G. Yang, E. C. Self, J. Liang, J. R. Dunlap, S. Men, C. L. L. Do-Thanh, J. Liu, Y. Zhang, S. Zhao, H. Lyu, A. P. Sokolov, J. Nanda, X. G. G. Sun, S. Dai, Ionic Liquid-Directed Nanoporous TiNb2O7 Anodes with Superior Performance for Fast-Rechargeable Lithium-Ion Batteries, Small 16 (2020) 2001884. https://doi.org/10.1002/smll.202001884
R. Qian, H. Lu, T. Yao, F. Xiao, J. W. Shi, Y. Cheng, H. Wang, Hollow TiNb2O7 Nanospheres with a Carbon Coating as High-Efficiency Anode Materials for Lithium-Ion Batteries, ACS Sustainable Chemistry and Engineering 10 (2022) 61-70. https://doi.org/10.1021/acssuschemeng.1c04712
W. Chung, J. H. Bang, Carbon-Doped TiNb2O7 Suppresses Amorphization-Induced Capacity Fading, ACS Applied Materials and Interfaces 14 (2022) 19365-19375. https://doi.org/10.1021/acsami.2c00589
Y. Zhang, Y. Tang, L. Liu, Y. Gao, C. Zhu, X. Bai, X. Wang, TiNbxO2+2.5x (x=2, 5, 6)/C hybrid nanotubes with enhanced kinetics for high-performance lithium anodes, Electrochimica Acta 410 (2022) 139862. https://doi.org/10.1016/j.electacta.2022.139862
L. Hu, L. Luo, L. Tang, C. Lin, R. Li, Y. Chen, Ti2Nb2xO4+5x anode materials for lithium-ion batteries: A comprehensive review, Journal of Materials Chemistry A 6 (2018) 9799-9815. https://doi.org/10.1039/c8ta00895g
X. Bin Zhong, T. T. Huang, J. F. Liang, S. X. Li, H. H. Zhang, G. Y. Liu, G. M. Wang, Porous TiNb2O7@N-C as anode materials for lithium-ion batteries with ultrahigh-rate performance, Journal of Physical Chemistry C 125 (2021) 23960-23967. https://doi.org/10.1021/acs.jpcc.1c07463
D. A. Khoviv, S. V. Zaytsev, V. M. Ievlev, Electronic structure and formation mechanism of complex Ti-Nb oxide, Thin Solid Films 520 (2012) 4797-4799. https://doi.org/10.1016/j.tsf.2011.10.130
J. Lee, H. H. Kwak, S. E. Bak, G. J. Lee, S. T. Hong, M. A. Abbas, J. H. Bang, New Class of Tita-ni¬um Niobium Oxide for a Li-Ion Host: TiNbO4 with Purely Single-Phase Lithium Inter¬ca-lation, Chemistry of Materials 34 (2022) 854-863. https://doi.org/10.1021/acs.chemmater.1c03960
C. I. Thomas, M. Karppinen, Intercalation of Primary Alcohols into Layered Titanoniobates, Inorganic Chemistry 56 (2017) 9132-9138. https://doi.org/10.1021/acs.inorgchem.7b01135
C. Yang, S. Deng, C. Lin, S. Lin, Y. Chen, J. Li, H. Wu, Porous TiNb24O62 microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles, Nanoscale 8 (2016) 18792-18799. https://doi.org/10.1039/c6nr04992c
C. Lin, S. Deng, D. J. Kautz, Z. Xu, T. Liu, J. Li, N. Wang, F. Lin, Intercalating Ti2Nb14O39 Anode Materials for Fast-Charging, High-Capacity and Safe Lithium-Ion Batteries, Small 13 (2017) 1-8. https://doi.org/10.1002/smll.201702903
X. Wu, J. Miao, W. Han, Y. S. Hu, D. Chen, J. S. Lee, J. Kim, L. Chen, Investigation on Ti2Nb10O29 anode material for lithium-ion batteries, Electrochemistry Communications 25 (2012) 39-42. https://doi.org/10.1016/j.elecom.2012.09.015
T. F. Fuller, M. Doyle, J. Newman, Simulation and Optimization of the Dual Lithium Ion Insertion Cell, Journal of The Electrochemical Society 141 (1994) 1. https://doi.org/10.1149/1.2054684
E. Martínez-Rosas, R. Vasquez-Medrano, A. Flores-Tlacuahuac, Modeling and simulation of lithium-ion batteries, Computers and Chemical Engineering 35 (2011) 1937-1948. https://doi.org/10.1016/j.compchemeng.2011.05.007
R. Morasch, J. Keilhofer, H. A. Gasteiger, B. Suthar, Methods—Understanding Porous Electrode Impedance and the Implications for the Impedance Analysis of Li-Ion Battery Electrodes, Journal of The Electrochemical Society 168 (2021) 080519. https://doi.org/10.1149/1945-7111/ac1892
I. V. Thorat, D. E. Stephenson, N. A. Zacharias, K. Zaghib, J. N. Harb, D. R. Wheeler, Quantifying tortuosity in porous Li-ion battery materials, Journal of Power Sources 188 (2009) 592-600. https://doi.org/10.1016/j.jpowsour.2008.12.032
C. Cai, G.M. Koenig, Processing Temperature Impact on TiNb2O7 Thick All Active Material Lithium-Ion Battery Electrodes, Journal of The Electrochemical Society 170 (2023) 10529. https://doi.org/10.1149/1945-7111/acb403
B. Guo, X. Yu, X. G. Sun, M. Chi, Z. A. Qiao, J. Liu, Y. S. Hu, X. Q. Yang, J. B. Goodenough, S. Dai, A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage, Energy and Environmental Science 7 (2014) 2220-2226. https://doi.org/10.1039/c4ee00508b
Y. Da Cho, G. T. K. Fey, H. M. Kao, The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes, Journal of Power Sources 189 (2009) 256-262. https://doi.org/10.1016/j.jpowsour.2008.09.053
J. Wang, X. M. Liu, H. Yang, X. D. Shen, Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol-gel method, Journal of Alloys and Compounds 509 (2011) 712-718. https://doi.org/10.1016/j.jallcom.2010.07.215
A. N. Mistry, K. Smith, P. P. Mukherjee, Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes, ACS Applied Materials and Interfaces 10 (2018) 6317-6326. https://doi.org/10.1021/acsami.7b17771
S. D. Han, O. Borodin, D. M. Seo, Z. B. Zhou, W. A. Henderson, Electrolyte Solvation and Ionic Association, Journal of The Electrochemical Society 161 (2014) A2042-A2053. https://doi.org/10.1149/2.0101414jes
M. Lin, D. Cheng, J. Liu, L. Ouyang, R. Hu, J. Liu, L. Yang, M. Zhu, Dual-Carbon-Confined SnS Nanostructure with High Capacity and Long Cycle Life for Lithium-ion Batteries, Energy & Environmental Materials 4 (2021) 562-568. https://doi.org/10.1002/eem2.12136
A. M. Bruck, C. A. Cama, C. N. Gannett, A. C. Marschilok, E. S. Takeuchi, K. J. Takeuchi, Nano¬crystalline iron oxide based electroactive materials in lithium ion batteries: the critical role of crystallite size, morphology, and electrode heterostructure on battery relevant electro¬che¬mistry, Inorganic Chemistry Frontiers 3 (2016) 26-40. https://doi.org/10.1039/C5QI00247H
Y. Park, N. S. Choi, S. Park, S. H. Woo, S. Sim, B. Y. Jang, S. M. Oh, S. Park, J. Cho, K. T. Lee, Si-Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithium-Ion Batteries, Advanced Energy Materials 3 (2013) 206-212. https://doi.org/10.1002/aenm.201200389
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
National Science Foundation
Grant numbers CBET-1652488