Corrosion cracking in Mg alloys based bioimplants
Review paper
DOI:
https://doi.org/10.5599/jese.1636Keywords:
Biomaterials, coatings, biocompatibility, implants, magnesium implants
Abstract
Recently, magnesium alloys have garnered a lot of interest as a potentially useful material for applications involving biodegradable implants. Cracking or fracture of metal-based implants under the combined action of corrosion and mechanical stresses, namely stress corrosion cracking (SCC) is an obviously critical criterion before any new material might be deployed as implants. Cracking or fracture of metal-based implants occurs under the simultaneous action of corrosion and mechanical stresses. This article gives a review of the existing literature on the SCC of magnesium alloys in corrosive environments, including simulated body fluid and the accompanying fracture process. It also indicates the knowledge gap that exists in this area of research. In addition, a high-level review of the preventative measures that may be taken to avoid potential corrosion fatigue failures in magnesium alloys is provided.
Downloads
References
B. Zberg, P. J. Uggowitzer, J. F. Löffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nature Materials 8 (2009) 887-891. https://doi.org/10.1038/nmat2542
E. Ma, J. Xu, The glass window of opportunities, Nature Materials 8 (2009) 855-857. https://doi.org/10.1038/nmat2550
M. Sivakumar, S. Rajeswari, Investigation of failures in stainless steel orthopaedic implant devices: pit-induced stress corrosion cracking, Journal of Materials Science Letters 11 (1992) 1039-1042. https://doi.org/10.1007/BF00729754
R. A. Antunes, M. C. L. de Oliveira, Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation, Acta Biomaterialia 8 (2012) 937-962. https://doi.org/10.1016/j.actbio.2011.09.012
R. K. Singh Raman, L. Choudhary, Cracking of magnesium-based biodegradable implant alloys under the combined action of stress and corrosive body fluid, Emerging Materials Research 2 (2013) 219-228. https://doi.org/10.1680/emr.13.00033
M. B. Kannan, R. K. S. Raman, In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid, Biomaterials 29 (2008) 2306-2314. https://doi.org/10.1016/j.biomaterials.2008.02.003
L. Choudhary, R. K. S. Raman, Magnesium alloys as body implants: Fracture mechanism under dynamic and static loadings in a physiological environment, Acta Biomaterialia 8 (2012) 916-923. https://doi.org/10.1016/j.actbio.2011.10.031
M. B. Kannan, R. K. S. Raman, Evaluation of SCC behaviour of AZ91 alloy in modified-simulated body fluid for orthopaedic implant application, Scripta Materialia 59 (2008) 175-178. https://doi.org/10.1016/j.scriptamat.2008.03.001
M. Bobby Kannan, R. K. Singh Raman, F. Witte, C. Blawert, W. Dietzel, Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium‐based alloy in simulated body fluid, Journal of Biomedical Materials Research B 96 (2011) 303-309. https://doi.org/10.1002/jbm.b.31766
A. C. Hänzi, I. Gerber, M. Schinhammer, J. F. Löffler, P. J. Uggowitzer, On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys, Acta Biomaterialia 6 (2010) 1824-1833. https://doi.org/10.1016/j.actbio.2009.10.008
A. C. Hänzi, A. S. Sologubenko, P.J. Uggowitzer, Design strategy for new biodegradable Mg-Y-Zn alloys for medical applications, International Journal of Materials Research 100 (2009) 1127-1136. https://doi.org/10.3139/146.110157
T. Kraus, S. F. Fischerauer, A. C. Hänzi, P. J. Uggowitzer, J. F. Löffler, A. M. Weinberg, Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone, Acta Biomaterialia 8 (2012) 1230-1238. https://doi.org/10.1016/j.actbio.2011.11.008
F. I. Wolf, A. Cittadini, Chemistry and biochemistry of magnesium, Molecular Aspects of Medicine 24 (2003) 3-9. https://doi.org/10.1016/s0098-2997(02)00087-0
F. Witte, J. Fischer, J. Nellesen, H.-A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials 27 (2006) 1013-1018. https://doi.org/10.1016/j.biomaterials.2005.07.037
N.-E. L. Saris, E. Mervaala, H. Karppanen, J. A. Khawaja, A. Lewenstam, Magnesium: an update on physiological, clinical and analytical aspects, Clinica Chimica Acta 294 (2000) 1-26. https://doi.org/10.1016/s0009-8981(99)00258-2
M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials 27 (2006) 1728-1734. https://doi.org/10.1016/j.biomaterials.2005.10.003
B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich, Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?, Heart 89 (2003) 651-656. https://doi.org/10.1136%2Fheart.89.6.651
S. Sefa, D. C. Wieland, H. Helmholz, B. Zeller-Plumhoff, A. Wennerberg, J. Moosmann, R. Willumeit-Römer, S. Galli, Assessing the long-term in vivo degradation behavior of magne-sium alloys-a high resolution synchrotron radiation micro computed tomography study, Frontiers in Biomaterials Science 1 (2022) 925471. https://doi.org/10.3389/fbiom.2022.925471
T. B. Matias, G. H. Asato, B. T. Ramasco, W. J. Botta, C. S. Kiminami, C. Bolfarini, Processing and characterization of amorphous magnesium based alloy for application in biomedical implants, Journal of Materials Research and Technology 3 (2014) 203-209. https://doi.org/10.1016/j.jmrt.2014.03.007
G. Song, Control of biodegradation of biocompatable magnesium alloys, Corrosion Science 49 (2007) 1696-1701. https://doi.org/10.1016/j.corsci.2007.01.001
N. T. Kirkland, Magnesium biomaterials: past, present and future, Corrosion Engineering, Science and Technology 47 (2012) 322-328. https://doi.org/10.1179/1743278212Y.0000000034
D. Xue, Y. Yun, Z. Tan, Z. Dong, M.J. Schulz, In vivo and in vitro degradation behavior of magnesium alloys as biomaterials, Journal of Materials Science & Technology 28 (2012) 261-267. https://doi.org/10.1016/S1005-0302(12)60051-6
J. Hofstetter, M. Becker, E. Martinelli, A. M. Weinberg, B. Mingler, H. Kilian, S. Pogatscher, P. J. Uggowitzer, J .F. Löffler, High-strength low-alloy (HSLA) Mg-Zn-Ca alloys with excellent bio¬de¬gradation performance, JOM 66 (2014) 566-572. https://doi.org/10.1007/s11837-014-0875-5
C. M. Rimnac, T. M. Wright, D. L. Bartel, R. W. Klein, A. A. Petko, Failure of orthopedic implants: Three case histories, Materials Characterization 26 (1991) 201-209. https://doi.org/10.1016/1044-5803(91)90012-S
G. K. Triantafyllidis, A. V. Kazantzis, K. T. Karageorgiou, Premature fracture of a stainless steel 316L orthopaedic plate implant by alternative episodes of fatigue and cleavage decoherence, Engineering Failure Analysis 14 (2007) 1346-1350. https://doi.org/10.1016/j.engfailanal.2006.11.010
H. Amel-Farzad, M. T. Peivandi, S. M. R. Yusof-Sani, In-body corrosion fatigue failure of a stain¬less steel orthopaedic implant with a rare collection of different damage mechanisms, Engine¬ering Failure Analysis 14 (2007) 1205-1217. https://doi.org/10.1016/j.engfailanal.2006.11.037
R. K. Singh Raman, S. Jafari, S. E. Harandi, Corrosion fatigue fracture of magnesium alloys in bioimplant applications, Engineering Fracture Mechanics 137 (2015) 97-108. https://doi.org/10.1016/j.engfracmech.2014.08.009
R. K. Singh Raman, The role of microstructure in localized corrosion of magnesium alloys, Metallurgical and Materials Transactions A 35 (2004) 2525-2531. https://doi.org/10.1007/s11661-006-0233-5
M. B. Kannan, W. Dietzel, C. Blawert, A. Atrens, P. Lyon, Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80, Materials Science and Engineering: A 480 (2008) 529-539. https://doi.org/10.1016/j.msea.2007.07.070
X. N. Gu, W. R. Zhou, Y. F. Zheng, Y. Cheng, S. C. Wei, S. P. Zhong, T. F. Xi, L. J. Chen, Corrosion fatigue behaviors of two biomedical Mg alloys-AZ91D and WE43-in simulated body fluid, A Acta Biomaterialia 6 (2010) 4605-4613. https://doi.org/10.1016/j.actbio.2010.07.026
N. Maruyama, D. Mori, S. Hiromoto, K. Kanazawa, M. Nakamura, Fatigue strength of 316L-type stainless steel in simulated body fluids, Corroion Science 53 (2011) 2222-2227. https://doi.org/10.1016/j.corsci.2011.03.004
Y. Okazaki, S. Rao, Y. Ito, T. Tateishi, Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V, Biomaterials 19 (1998) 1197-1215. https://doi.org/10.1016/s0142-9612(97)00235-4
M. Niinomi, Fatigue characteristics of metallic biomaterials, International Journal of Fatigue 29 (2007) 992-1000. https://doi.org/10.1016/j.ijfatigue.2006.09.021
C. Potzies, K. U. Kainer, Fatigue of magnesium alloys, Advanced Engineering Materials 6 (2004) 281-289. https://doi.org/10.1002/adem.200400021
S. Jafari, R. K. S. Raman, C. H. J. Davies, Corrosion fatigue of a magnesium alloy in modified simulated body fluid, Engineering Fracture Mechanics 137 (2015) 2-11. https://doi.org/10.1016/j.engfracmech.2014.07.007
Z. Li, A.A. Luo, Q. Wang, H. Zou, J. Dai, L. Peng, Fatigue characteristics of sand-cast AZ91D magnesium alloy, Journal of Magnesium and Alloys 5 (2017) 1-12. https://doi.org/10.1016/j.jma.2017.03.001
M. F. Horstemeyer, N. Yang, K. Gall, D. McDowell, J. Fan, P. Gullett, High cycle fatigue mechanisms in a cast AM60B magnesium alloy, Fatigue & Fracture of Engineering Materials & Structures 25 (2002) 1045-1056. https://doi.org/10.1046/j.1460-2695.2002.00594.x
S. M. Yin, F. Yang, X. M. Yang, S. D. Wu, S. X. Li, G.Y. Li, The role of twinning-detwinning on fatigue fracture morphology of Mg-3% Al-1% Zn alloy, Materials Science and Engineering: A 494 (2008) 397-400. https://doi.org/10.1016/j.msea.2008.04.056
G. L. Makar, J. L. Kruger, Corrosion of magnesium, International Materials Reviews 38 (1993) 138-153. https://doi.org/10.1179/imr.1993.38.3.138
K. Ebtehaj, D. Hardie, R.N. Parkins, The influence of chloride-chromate solution composition on the stress corrosion cracking of a Mg Al alloy, Corrosion Science 28 (1988) 811-821. https://doi.org/10.1016/0010-938X(88)90119-9
R. S. Stampella, R. P. M. Procter, V. Ashworth, Environmentally-induced cracking of magne-sium, Corrosion Science 24 (1984) 325-341. https://doi.org/10.1016/0010-938x(84)90017-9
Z. Y. Nan, S. Ishihara, T. Goshima, Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution, International Journal of Fatigue 30 (2008) 1181-1188. https://doi.org/10.1016/j.ijfatigue.2007.09.005
M.S. Bhuiyan, Y. Ostuka, Y. Mutoh, T. Murai, S. Iwakami, Corrosion fatigue behavior of conversion coated AZ61 magnesium alloy, Materials Science and Engineering: A 527 (2010) 4978-4984. https://doi.org/10.1016/j.msea.2010.04.059
Y. Uematsu, K. Tokaji, T. Ohashi, Corrosion fatigue behavior of extruded AZ80, AZ61, and AM60 magnesium alloys in distilled water, Strength of Materials 40 (2008) 130-133. https://doi.org/10.1007/s11223-008-0034-8
A. Eliezer, E. M. Gutman, E. Abramov, Y. Unigovski, Corrosion fatigue of die-cast and extruded magnesium alloys, Journal of Light Metals 1 (2001) 179-186. https://doi.org/10.1016/S1471-5317(01)00011-6
Y. Unigovski, A. Eliezer, E. Abramov, Y. Snir, E. M. Gutman, Corrosion fatigue of extruded magnesium alloys, Materials Science and Engineering: A 360 (2003) 132-139. https://doi.org/10.1016/S0921-5093(03)00409-X
Y. Uematsu, T. Kakiuchi, M. Nakajima, Y. Nakamura, S. Miyazaki, H. Makino, Fatigue crack propagation of AZ61 magnesium alloy under controlled humidity and visualization of hydrogen diffusion along the crack wake, International Journal of Fatigue 59 (2014) 234-243. https://doi.org/10.1016/j.ijfatigue.2013.08.014
G. E. Dieter, D. Bacon, Mechanical Metallurgy, McGraw-hill New York, 1976. ISBN: 9780071004060 https://www.abebooks.co.uk/servlet/BookDetailsPL?bi=31033624469&searchurl=an%3Ddieter%26n%3D100121503%26sortby%3D17%26tn%3Dmechanical%2Bmetallurgy&cm_sp=snippet-_-srp1-_-title1
V. Levkovitch, R. Sievert, B. Svendsen, Simulation of fatigue crack propagation in ductile metals by blunting and re-sharpening, International Journal of Fatigue 136 (2005) 207-220. https://doi.org/10.1007/s10704-005-6024-y
V. Singh, L. K. Singhal, In vitro corrosion fatigue behavior of low nickel high nitrogen austenitic stainless steel, Materials Science and Engineering: A 538 (2012) 224-230. https://doi.org/10.1016/j.msea.2012.01.034
A. K. Vasudevan, K. Sadananda, Classification of environmentally assisted fatigue crack growth behavior, International Journal of Fatigue 31 (2009) 1696-1708. https://doi.org/10.1016/j.ijfatigue.2009.03.019
R. Akid, Corrosion Fatigue in: Shreir’s Corrosion, B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, H. Stott, Eds., Elsevier B.V., 2010, 928-953. https://doi.org/10.1016/B978-044452787-5.00038-X
K. J. Bundy, L. D. Zardiackas, Corrosion fatigue and stress-corrosion cracking in metallic biomaterials, in Materials for Medical Devices, R. J. Narayan, Ed., ASM International, 2012 853-890. https://doi.org/10.31399/asm.hb.v23.a0005654
K. Tokaji, M. Nakajima, Y. Uematsu, Fatigue crack propagation and fracture mechanisms of wrought magnesium alloys in different environments, International Journal of Fatigue 31 (2009) 1137-1143. https://doi.org/10.1016/j.ijfatigue.2008.12.012
A. Eliezer, O. Medlinsky, J. Haddad, G. Ben-Hamu, Corrosion fatigue behavior of magnesium alloys under oil environments, Materials Science and Engineering: A 477 (2008) 129-136. https://doi.org/10.1016/j.msea.2007.05.068
S. Jafari, R. K. Singh Raman, Corrosion fatigue behaviour of a common AZ91D magnesium alloy in modified simulated body fluid, Advanced Materials Research 891-892 (2014) 267-272. https://doi.org/10.4028/www.scientific.net/AMR.891-892.267
S. Rozali, Y. Mutoh, K. Nagata, Effect of frequency on fatigue crack growth behavior of magnesium alloy AZ61 under immersed 3.5 mass% NaCl environment, Materials Science and Engineering: A 528 (2011) 2509-2516. https://doi.org/10.1016/j.msea.2010.12.048
H. Jansson, I. Svensson, Vibrations in timber bridges due to pedestrian induced forces, A case study of Älvsbackabron, Master's Thesis, Chalmers University of Technology, Göteborg, Sweden 2012. https://odr.chalmers.se/server/api/core/bitstreams/0738d740-8b9a-46bf-8e22-885953d19b11/content
Q. Zhou, Detection of heatbeats in wireless signal, MS Thesis, University of Hawaii at Manoa, 2006. http://hdl.handle.net/10125/20563
Y. Xin, T. Hu, P. K. Chu, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review, Acta Biomaterialia 7 (2011) 1452-1459. https://doi.org/10.1016/j.actbio.2010.12.004
A. Yamamoto, S. Hiromoto, Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro, Materials Science and Engineering:C 29 (2009) 1559-1568. https://doi.org/10.1016/j.msec.2008.12.015
Y. Xin, T. Hu, P. K. Chu, Influence of test solutions on in vitro studies of biomedical magnesium alloys, Journal of The Electrochemical Society 157 (2010) C238. https://doi.org/10.1149/1.3421651
L. Yang, N. Hort, R. Willumeit, F. Feyerabend, Effects of corrosion environment and proteins on magnesium corrosion, Corrosion Engineering, Science and Technology 47 (2012) 335-339. https://doi.org/10.1179/1743278212Y.0000000024
O. F. Devereux, A. J. McEvely, R. W. Staehle, Corrosion fatigue: Chemistry, Mechanic, and Microstructure, Part VII Aluminum Alloys, National Association of Corrosion Engineers, Houston,, Texas, USA, 1972. https://www.worldcat.org/title/corrosion-fatigue-chemistry-mechanics-and-microstructure/oclc/603457
Corrosion fatigue: chemistry, mechanics, and microstructure [proceedings], O. Devereux, A. J. McEvily, R. W. Staehle Eds., International Corrosion Fatigue Conference, University of Connecticut, June 14-18, 1971. https://catalog.library.vanderbilt.edu/discovery/fulldisplay/alma991012433339703276/01VAN_INST:vanui
P. S. Rao, Mechanisms of Corrosion Fatigue in Fatigue and Fracture, ASM International, 1996. https://doi.org/10.31399/asm.hb.v19.a0002361
A. K. Vasudevan, K. Sadananda, Classification of environmentally assisted fatigue crack growth behavior, International Journal of Fatigue 31 (2009) 1696-1708. https://doi.org/10.1016/j.ijfatigue.2009.03.019
Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomaterials 29 (2008) 1329-1344. https://doi.org/10.1016/j.biomaterials.2007.12.021
S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Research on an Mg-Zn alloy as a degradable biomaterial, Acta Biomaterialia6 (2010) 626-640. https://doi.org/10.1016/j.actbio.2009.06.028
W. Yang, P. Zhang, J. Liu, Y. Xue, Effect of long-term intake of Y3+ in drinking water on gene expression in brains of rats, Journal of Rare Earths 24 (2006) 369-373. https://doi.org/10.1016/S1002-0721(06)60126-9
F. A. Mirza, D. L. Chen, Fatigue of rare‐earth containing magnesium alloys, Fatigue & Fracture of Engineering Materials & Structures 37 (2014) 831-853. https://doi.org/10.1111/ffe.12198
A. Vinogradov, D. Orlov, Y. Estrin, Improvement of fatigue strength of a Mg-Zn-Zr alloy by integrated extrusion and equal-channel angular pressing, Scripta Materialia 67 (2012) 209-212. https://doi.org/10.1016/j.scriptamat.2012.04.021
G. Ben Hamu, D. Eliezer, L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy, Journal of Alloys and Compounds 468 (2009) 222-229. https://doi.org/10.1016/j.jallcom.2008.01.084
P. Zhang, J. Lindemann, C. Leyens, Influence of shot peening on notched fatigue strength of the high-strength wrought magnesium alloy AZ80, Journal of Alloys and Compounds 497 (2010) 380-385. https://doi.org/10.1016/j.jallcom.2010.03.079
S.A. Khan, M.S. Bhuiyan, Y. Miyashita, Y. Mutoh, T. Koike, Corrosion fatigue behavior of die-cast and shot-blasted AM60 magnesium alloy, Materials Science and Engineering: A 528 (2011) 1961-1966. https://doi.org/10.1016/j.msea.2010.11.033
Y. Uematsu, T. Kakiuchi, T. Teratani, Y. Harada, K. Tokaji, Improvement of corrosion fatigue strength of magnesium alloy by multilayer diamond-like carbon coatings, Surface and Coatings Technology 205 (2011) 2778-2784. https://doi.org/10.1016/j.surfcoat.2010.10.040
J. Singh, S. Kumar, S. K. Mohapatra, Optimization of Erosion Wear Influencing Parameters of HVOF Sprayed Pumping Material for Coal-Water Slurry, Materials Today Proceedings 5 (2018) 23789-23795. https://doi.org/10.1016/j.matpr.2018.10.170
J. Singh, S. Kumar, G. Singh, Taguchi’s Approach For Optimization Of Tribo-Resistance Parameters Forss304, Materials Today Proceedings 5 (2018) 5031-5038. https://doi.org/10.1016/j.matpr.2017.12.081
J. Singh, S. K. Mohapatra, S. Kumar, Performance analysis of pump materials employed in bottom ash slurry erosion conditions, Journal Tribologi 30 (2021) 73-89. https://jurnaltribologi.mytribos.org/v30/JT-30-73-89.pdf
J. Singh, S. Singh, Neural network prediction of slurry erosion of heavy-duty pump impeller/casing materials 18Cr-8Ni, 16Cr-10Ni-2Mo, super duplex 24Cr-6Ni-3Mo-N, and grey cast iron, Wear 476 (2021) 203741. https://doi.org/10.1016/j.wear.2021.203741
J. Singh, S. Kumar, S. K. Mohapatra, Study on Solid Particle Erosion of Pump Materials by Fly Ash Slurry using Taguchi’s Orthogonal Array, Tribologia - Finnish Journal of Tribology 38 (2021) 31-38. https://doi.org/10.30678/fjt.97530
J. Singh, H. S. Gill, H. Vasudev, Computational fluid dynamics analysis on effect of particulate properties on erosive degradation of pipe bends, International Journal on Interactive Design and Manufacturing (2022). https://doi.org/10.1007/s12008-022-01094-7
J. Singh, S. Singh, J. Pal Singh, Investigation on wall thickness reduction of hydropower pipeline underwent to erosion-corrosion process, Engineering Failure Analysis 127 (2021) 105504. https://doi.org/10.1016/j.engfailanal.2021.105504
J. Singh, Application of Thermal Spray Coatings for Protection against Erosion, Abrasion, and Corrosion in Hydropower Plants and Offshore Industry in Thermal Spray Coatings, L. Thakur, H. Vasudev, Eds., CRC Press, Boca Raton, 2021, 243-283. https://doi.org/10.1201/9781003213185-10
A. Biswas, L. Li, T. T. Maity, U. K. Chatterjee, B. B. Mordike, I. Manna, J. D. Majumdar, Laser surface treatment of Ti-6Al-4V for bio-implant application, Lasers in Engineering 17 (2007) 59-73. http://repository.ias.ac.in/18870/1/381.pdf
J. Singh, S. Kumar, S. K. Mohapatra, S. Kumar, Shape simulation of solid particles by digital interpretations of scanning electron micrographs using IPA technique, Materials Today: Proceedings 5 (2018) 17786-17791. https://doi.org/10.1016/j.matpr.2018.06.103
J. Singh, S. Kumar, S. Mohapatra, Study on role of particle shape in erosion wear of austenitic steel using image processing analysis technique, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 233 (2019) 712-725. https://doi.org/10.1177/1350650118794698
J. Singh, S. Singh, Support vector machine learning on slurry erosion characteristics analysis of Ni- and Co- alloy coatings, Surface Review and Letters (2023). https://doi.org/10.1142/S0218625X23400061
J. Singh, J. P. Singh, M. Singh, M. Szala, Computational analysis of solid particle-erosion produced by bottom ash slurry in 90° elbow, MATEC Web of Conferences 252 (2019) 04008. https://doi.org/10.1051/matecconf/201925204008
J. Singh, Investigation on slurry erosion of different pumping materials and coatings, PhD Thesis, Thapar Institute of Engineering and Technology, Patiala, India, 2019. http://hdl.handle.net/10266/5460
S. Kumar, M. Singh, J. Singh, J. P. Singh, S. Kumar, Rheological Characteristics of Uni/Bi-Variant Particulate Iron Ore Slurry: Artificial Neural Network Approach, Journal of Mining Science 55 (2019) 201-212. https://doi.org/10.1134/S1062739119025468
J. Singh, J. P. Singh, Numerical Analysis on Solid Particle Erosion in Elbow of a Slurry Conveying Circuit, Journal of Pipeline Systems Engineering and Practice 12 (2021) 04020070. https://doi.org/10.1061/(asce)ps.1949-1204.0000518
J. Singh, A review on mechanisms and testing of wear in slurry pumps, pipeline circuits and hydraulic turbines, Journal of Tribology 143 (2021) 090801. https://doi.org/10.1115/1.4050977
H. Vasudev, P. Singh, L. Thakur, A. Bansal, Mechanical and microstructural characterization of microwave post processed Alloy-718 coating, Materials Research Express 6 (2020) 1265f5. https://doi.org/10.1088/2053-1591/ab66fb
H. Vasudev, G. Prashar, L. Thakur, A. Bansal, Microstructural characterization and electrochemical corrosion behaviour of HVOF sprayed Alloy718-nanoAl2O3 composite coatings, Surface Topography: Metrology and Properties 9 (2021) 035003. https://doi.org/10.1088/2051-672X/ac1044
H. Vasudev, Wear Characteristics of Ni-WC Powder Deposited by Using a Microwave Route on Mild Steel, International Journal of Surface Engineering and Interdisciplinary Materials Science 8 (2020) 44-54. https://doi.org/10.4018/IJSEIMS.2020010104
H. Vasudev, G. Singh, A. Bansal, S. Vardhan, L. Thakur, Microwave heating and its applications in surface engineering: a review, Materials Research Express 6 (2019) 102001. https://doi.org/10.1088/2053-1591/ab3674
M. Rasekaran, P. Kumaresan, S. Nithiyanantham, V. K. Subramanian, S. Kalpana, Spray pyrolisis deposition and characterization of Cd-TiO2 thin film for photocatalytic and photovoltaic applications, Journal of Electrochemical Science and Engineering 12 (2022) 989-1000. https://doi.org/10.5599/jese.1120
D. Ushchapovskiy, V. Vorobyova, G. Vasyliev, O. Linyucheva, Electrodeposition of polyfunctional Ni coatings from deep eutectic solvent based on choline chloride and lactic acid, Journal of Electrochemical Science and Engineering 12 (2022) 1025-1039. https://doi.org/10.5599/jese.1451
I. G. Akande, O. S. I. Fayomi, B. J. Akpan, O. A. Aogo, P. N. Onwordi, Exploration of the effect of Zn-MgO-UPP coating on hardness, corrosion resistance and microstructure properties of mild steel, Journal of Electrochemical Science and Engineering 12 (2022) 829-840. https://doi.org/10.5599/jese.1311
Q. Wei, R. Haag, Universal polymer coatings and their representative biomedical applications, Materials Horizons 2 (2015) 567-577. https://doi.org/10.1039/c5mh00089k
J. Joseph, R. M. Patel, A. Wenham, J. R. Smith, Biomedical applications of polyurethane materials and coatings, The International Journal of Surface Engineering and Coatings 96 (2018) 121-129. https://doi.org/10.1080/00202967.2018.1450209
R. N. Oosterbeek, C. K. Seal, J. M. Seitz, M. M. Hyland, Polymer-bioceramic composite coatings on magnesium for biomaterial applications, Surface and Coatings Technology 236 (2013) 420-428. https://doi.org/10.1016/j.surfcoat.2013.10.029
A. K. Hussain, U. M. B. Al Naib, Recent developments in graphene based metal matrix composite coatings for corrosion protection application, Journal of Metals Materials and Minerals 29 (2019) 1-9. https://doi.org/10.14456/jmmm.2019.27
J. Singh, S. Singh, R. Gill, Applications of biopolymer coatings in biomedical engineering, Journal of Electrochemical Science and Engineering 13(1) (2022) 63-81. https://doi.org/10.5599/jese.1460
J. Song, B. Winkeljann, O. Lieleg, Biopolymer-Based Coatings: Promising Strategies to Improve the Biocompatibility and Functionality of Materials Used in Biomedical Engineering, Advanced Materials Interfaces 7 (2020). https://doi.org/10.1002/admi.202000850
Y. Guo, Y. Su, R. Gu, Z. Zhang, G. Li, J. Lian, L. Ren, Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating, Surface and Coatings Technology 401 (2020) 126318. https://doi.org/10.1016/j.surfcoat.2020.126318
G. Singh, H. Vasudev, A. Bansal, S. Vardhan, S. Sharma, Microwave cladding of Inconel-625 on mild steel substrate for corrosion protection, Materials Research Express 7 (2020) 026512. https://doi.org/10.1088/2053-1591/ab6fa3
Y. Wang, J. Stella, G. Darut, T. Poirier, H. Liao, APS prepared NiCrBSi-YSZ composite coatings for protection against cavitation erosion, Journal of Alloys and Compounds 699 (2017) 1095-1103. https://doi.org/10.1016/j.jallcom.2017.01.034
F. Zhang, Y. Liu, Q. Wang, Y. Han, Z. Yan, H. Chen, Y. Tan, Fabricating a heavy oil viscosity reducer with weak interaction effect: Synthesis and viscosity reduction mechanism, Colloid and Interface Science Communications 42 (2021) 100426. https://doi.org/10.1016/j.colcom.2021.100426
S. S. Rajahram, T. J. Harvey, R. J. K. Wood, Erosion-corrosion resistance of engineering materials in various test conditions, Wear 267 (2009) 244-254. https://doi.org/10.1016/j.wear.2009.01.052
K. R. R. M. Reddy, N. Ramanaiah, M. M. M. Sarcar, Effect of heat treatment on corrosion behavior of duplex coatings, Journal of King Saud University - Engineering Sciences 29 (2017) 84-90. https://doi.org/10.1016/j.jksues.2014.08.002
A. F. Yetim, M. Y. Codur, M. Yazici, Using of artificial neural network for the prediction of tribological properties of plasma nitrided 316L stainless steel, Materials Letters 158 (2015) 170-173. https://doi.org/10.1016/j.matlet.2015.06.015
S. Buytoz, M. Ulutan, S. Islak, B. Kurt, O. Nuri Çelik, Microstructural and Wear Characteristics of High Velocity Oxygen Fuel (HVOF) Sprayed NiCrBSi-SiC Composite Coating on SAE 1030 Steel, Arabian Journal for Science and Engineering 38 (2013) 1481-1491. https://doi.org/10.1007/s13369-013-0536-y
J. Singh, S. Singh, A. Verma, Artificial intelligence in use of ZrO2 material in biomedical science, Journal of Electrochemical Science and Engineering 13(1) (2022) 83-97. https://doi.org/10.5599/jese.1498
Y. Iwai, T. Miyajima, A. Mizuno, T. Honda, T. Itou, S. Hogmark, Micro-Slurry-jet Erosion (MSE) testing of CVD TiC/TiN and TiC coatings, Wear 267 (2009) 264-269. https://doi.org/10.1016/j.wear.2009.02.014
Z. Feng, Y. Tzeng, J.E. Field, Solid particle impact of CVD diamond films, Thin Solid Films 212 (1992) 35-42. https://doi.org/10.1016/0040-6090(92)90497-Y
U. B. Pal, S. C. Singhal, Electrochemical Vapor Deposition of Yttria‐Stabilized Zirconia Films, Journal of The Electrochemical Society 137 (1990) 2937-2941. https://doi.org/10.1149/1.2087102
D. Dhand, P. Kumar, J. S. Grewal, Wear behaviour and microstructural characteristics of cold sprayed nickel-alumina coatings on boiler steel, Journal of Electrochemical Science and Engineering 12 (2022) 841-849. https://doi.org/10.5599/jese.1270
G. Prashar, H. Vasudev, Surface topology analysis of plasma sprayed Inconel625-Al2O3 composite coating, Materials Today Proceedings 50 (2022) 607-611. https://doi.org/10.1016/j.matpr.2021.03.090
G. Prashar, H. Vasudev, High temperature erosion behavior of plasma sprayed Al2O3 coating on AISI-304 stainless steel, World Journal of Engineering 18 (2021) 760-766. https://doi.org/10.1108/WJE-10-2020-0476
G. Prashar, H. Vasudev, Structure-Property Correlation of Plasma-Sprayed Inconel625-Al2O3 Bimodal Composite Coatings for High-Temperature Oxidation Protection, Journal of Thermal Spray Technology 31 (2022) 2385-2408. https://doi.org/10.1007/s11666-022-01466-1
S. Singh, K. Goyal, R. Bhatia, Mechanical and microstructural properties of yttria-stabilized zirconia reinforced Cr3C2-25NiCr thermal spray coatings on steel alloy, Journal of Electrochemical Science and Engineering 12(5) (2022) 819-828. https://doi.org/10.5599/jese.1278
S. Singh, K. Goyal, R. Bhatia, Effect of nano yttria-stabilized zirconia on properties of Ni-20Cr composite coatings, Journal of Electrochemical Science and Engineering 12(5) (2022) 901-909. https://doi.org/10.5599/jese.1319
S. Sivarajan, A. Joshi, K. C. Palani, R. Padmanabhan, J. T. Stokes, Corrosion and wear protection of AISI 4140 carbon steel using a laser-modified high-velocity oxygen fuel thermal sprayed coatings, Journal of Electrochemical Science and Engineering 12(5) (2022) 865-876. https://doi.org/10.5599/jese.1320
M. Singh, H. Vasudev, M. Singh, Surface protection of SS-316L with boron nitride based thin films using radio frequency magnetron sputtering technique, Journal of Electrochemical Science and Engineering 12(5) (2022) 851-863. https://doi.org/10.5599/jese.1247
H. Vasudev, L. Thakur, H. Singh, A. Bansal, Erosion behaviour of HVOF sprayed Alloy718-nano Al2O3 composite coatings on grey cast iron at elevated temperature conditions, Surface Topography: Metrology and Properties 9 (2021) 035022. https://doi.org/10.1088/2051-672X/ac1c80
P. Singh, H. Vasudev, A. Bansal, Effect of post-heat treatment on the microstructural, mechanical, and bioactivity behavior of the microwave-assisted alumina-reinforced hydroxyapatite cladding, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering (2022) 095440892211161. https://doi.org/10.1177/09544089221116168
R. Singh, M. Toseef, J. Kumar, J. Singh, Benefits and Challenges in Additive Manufacturing and Its Applications in Sustainable Advanced Manufacturing and Materials Processing, S. Kaushal, I. Singh, S. Singh, A. Gupta, Eds., CRC Press, Boca Raton, 2022, 137-157. https://doi.org/10.1201/9781003269298-8
D. Kumar, R. Yadav, J. Singh, Evolution and Adoption of Microwave Claddings in Modern Engineering Applications, in Advances in Microwave Processing for Engineering Materials, A. Bansal, H. Vasudev, Eds., CRC Press, Boca Raton, 2022, 134-153 https://doi.org/10.1201/9781003248743-8.
H. Vasudev, G. Prashar, L. Thakur, A. Bansal, Electrochemical Corrosion Behavior and Microstructural Characterization of HVOF Sprayed Inconel-718 Coating on Gray Cast Iron, Journal of Failure Analysis and Prevention 21 (2021) 250-260. https://doi.org/10.1007/s11668-020-01057-8
H. Vasudev, L. Thakur, H. Singh, A. Bansal, A study on processing and hot corrosion behaviour of HVOF sprayed Inconel718-nano Al2O3 coatings, Materials Today Communication 25 (2020) 101626. https://doi.org/10.1016/j.mtcomm.2020.101626
R. Kumar, S. Kumar, D. Mudgal, Deposition of Al2O3/Cr2O3 ceramics HVOF sprayed coatings for protection against silt erosion, Surface Review and Letters (2023). https://doi.org/10.1142/S0218625X2240008X
P. Singh, A. Bansal, H. Vasudev, P. Singh, In situ surface modification of stainless steel with hydroxyapatite using microwave heating, Surface Topography: Metrology and Properties 9 (2021) 035053. https://doi.org/10.1088/2051-672X/ac28a9
G. Prashar, H. Vasudev, L. Thakur, Influence of heat treatment on surface properties of HVOF deposited WC and Ni-based powder coatings: a review, Surface Topography: Metrology and Properties 9 (2021) 043002. https://doi.org/10.1088/2051-672X/ac3a52
G. Prashar, H. Vasudev, Structure-property correlation and high-temperature erosion performance of Inconel625-Al2O3 plasma-sprayed bimodal composite coatings, Surface and Coatings Technology 439 (2022) 128450. https://doi.org/10.1016/j.surfcoat.2022.128450
G. Prashar, H. Vasudev, L. Thakur, Performance of different coating materials against slurry erosion failure in hydrodynamic turbines: A review, Engineering Failure Analysis 115 (2020) 104622. https://doi.org/10.1016/j.engfailanal.2020.104622
G. Singh, H. Vasudev, A. Bansal, S. Vardhan, Influence of heat treatment on the microstructure and corrosion properties of the Inconel-625 clad deposited by microwave heating, Surface Topography: Metrology and Properties 9 (2021) 025019. https://doi.org/10.1088/2051-672X/abfc61
J. Singh, Wear performance analysis and characterization of HVOF deposited Ni-20Cr2O3, Ni-30Al2O3, and Al2O3-13TiO2 coatings, Applied Surface Science Advances 6 (2021) 100161. https://doi.org/10.1016/j.apsadv.2021.100161
J. Singh, Tribo-performance analysis of HVOF sprayed 86WC-10Co4Cr & Ni-Cr2O3 on AISI 316L steel using DOE-ANN methodology, Industrial Lubrication and Tribology 73 (2021) 727-735. https://doi.org/10.1108/ILT-04-2020-0147
J. Singh, J. P. Singh, Performance analysis of erosion resistant Mo2C reinforced WC-CoCr coating for pump impeller with Taguchi’s method, Industrial Lubrication and Tribology 74 (2022) 431-441. https://doi.org/10.1108/ILT-05-2020-0155
J. Singh, S. Singh, Neural network supported study on erosive wear performance analysis of Y2O3/WC-10Co4Cr HVOF coating, Journal of King Saud University - Engineering Sciences (2022). https://doi.org/10.1016/j.jksues.2021.12.005
S. K. H. Vasudev, Microsrtructural and Mechanical Characterization of HVOF-Sprayed Ni-Based Alloy Coating, International Journal of Surface Engineering and Interdisciplinary Materials Science 10 (2022) 5. https://doi.org/10.4018/IJSEIMS.298705
R. Goyal, K. Goyal, Development of CNT reinforced Al2O3-TiO2 coatings for boiler tubes to improve hot corrosion resistance, Journal of Electrochemical Science and Engineering 12(5) (2022) 937-945. https://doi.org/10.5599/jese.1291
B. Malvi, M. Roy, Elevated temperature erosion of abradable seal coating, Journal of Electrochemical Science and Engineering 12(5) (2022) 889-899. https://doi.org/10.5599/jese.1388
S. Kumar, R. Bhatia, H. Singh, R. L. Virdi, Microstructural and mechanical properties of CNT-reinforced ZrO2-Y2O3 coated boiler tube steel T-91, Journal of Electrochemical Science and Engineering 12(5) (2022) 877-888. https://doi.org/10.5599/jese.1228
J. Singh, S. Kumar, S. K. Mohapatra, An erosion and corrosion study on thermally sprayed WC-Co-Cr powder synergized with Mo2C/Y2O3/ZrO2 feedstock powders, Wear 438-439 (2019) 102751. https://doi.org/10.1016/j.wear.2019.01.082
J. Singh, S. Kumar, S. K. Mohapatra, Erosion wear performance of Ni-Cr-O and NiCrBSiFe-WC(Co) composite coatings deposited by HVOF technique, Industrial Lubrication and Tribology 71 (2019) 610-619. https://doi.org/10.1108/ILT-04-2018-0149
J. Singh, S. Kumar, S. K. Mohapatra, Tribological performance of Yttrium (III) and Zirconium (IV) ceramics reinforced WC-10Co4Cr cermet powder HVOF thermally sprayed on X2CrNiMo-17-12-2 steel, Ceramics International 45 (2019) 23126-23142. https://doi.org/10.1016/j.ceramint.2019.08.007
J. Singh, Analysis on suitability of HVOF sprayed Ni-20Al, Ni-20Cr and Al-20Ti coatings in coal-ash slurry conditions using artificial neural network model, Industrial Lubrication and Tribology 71 (2019) 972-982. https://doi.org/10.1108/ILT-12-2018-0460
S. V Dorozhkin, Calcium orthophosphates, Journal of Materials Science 42 (2007) 1061-1095. https://doi.org/10.1007/s10853-006-1467-8
Y. Song, S. Zhang, J. Li, C. Zhao, X. Zhang, Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior, Acta Biomaterialia 6 (2010) 1736-1742. https://doi.org/10.1016/j.actbio.2009.12.020
P. B. Srinivasan, C. Blawert, W. Dietzel, Effect of plasma electrolytic oxidation coating on the stress corrosion cracking behaviour of wrought AZ61 magnesium alloy, Corrosion Science 50 (2008) 2415-2418. https://doi.org/10.1016/j.corsci.2008.05.018
A. Němcová, P. Skeldon, G. E. Thompson, S. Morse, J. Čížek, B. Pacal, Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy, Corrosion Science 82 (2014) 58-66. https://doi.org/10.1016/j.corsci.2013.12.019
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.