Electrode configurations study for alkaline direct ethanol fuel cells

Original scientific paper


  • Michaela Roschger Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria https://orcid.org/0000-0002-6638-7987
  • Sigrid Wolf Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria https://orcid.org/0000-0002-6571-5512
  • Andreas Billiani Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria https://orcid.org/0009-0004-2840-1575
  • Selestina Gorgieva Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia https://orcid.org/0000-0002-2180-1603
  • Boštjan Genorio Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia https://orcid.org/0000-0002-0714-3472
  • Viktor Hacker Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria https://orcid.org/0000-0001-5956-7579




Membrane electrode assembly, fuel cell, single cell tests, polarization curve
Graphical Abstract


The direct electrochemical conversion of ethanol, a sustainable fuel, is an alternative sustainable technology of the future. In this study, membrane electrode assemblies with different electrode configurations for an alkaline direct ethanol fuel cell were fabricated and tested in a fuel cell device. The configurations include a catalyst-coated substrate (CCS), a catalyst-coated membrane (CCM), and a mixture of these two fabrication options. Two different anion exchange membranes were used to perform a comprehensive analysis. The fabricated CCSs and CCMs were characterized with single cell measurements, electro­chemical impedance spectroscopy and scanning electron microscopy. In addition, the swelling behavior of the membranes in alkaline solution was investigated in order to obtain information for CCM production. The results of the experimental electrochemical tests show that the CCS approach provides higher power densities (42.4 mW cm-2) than the others, regardless of the membrane type.


Download data is not yet available.


E. H. Yu, X. Wang, U. Krewer, L. Li, K. Scott. Direct oxidation alkaline fuel cells: From materials to systems, Energy and Environmental Science 5 (2012) 5668c5680. https://doi.org/10.1039/c2ee02552c

T .B. Ferriday, P. H. Middleton. Alkaline fuel cell technology, International Journal of Hydrogen Energy 46 (2021) 18489-18510. https://doi.org/10.1016/j.ijhydene.2021.02.203

S. Wolf, M. Roschger, B. Genorio, M. Kolar, D. Garstenauer, B. Bitschnau, V. Hacker. Ag-MnxOy on Graphene Oxide Derivatives as Oxygen Reduction Reaction Catalyst in Alkaline Direct Ethanol Fuel Cells, Catalysts 12 (2022) 780. https://doi.org/10.3390/catal12070780

S. Gorgieva, A. Osmić, S. Hribernik, M. Božič, J. Svete, V. Hacker, S. Wolf, B. Genorio. Efficient chitosan/nitrogen-doped reduced graphene oxide composite membranes for direct alkaline ethanol fuel cells, International Journal of Molecular Sciences 22 (2021) 1740. https://doi.org/10.3390/ijms22041740

T. S. Zhao, Y. S. Li, S. Y. Shen. Anion-exchange membrane direct ethanol fuel cells: Status and perspective, Frontiers of Energy and Power Engineering in China 4 (2010) 443-458. https://doi.org/10.1007/s11708-010-0127-5

L. An, T. S. Zhao, Y. S. Li. Carbon-neutral sustainable energy technology: Direct ethanol fuel cells, Renewable and Sustainable Energy Reviews 50 (2015) 1462-1468. https://doi.org/10.1016/j.rser.2015.05.074

L. Yaqoob, T. Noor, N. Iqbal. A comprehensive and critical review of the recent progress in electrocatalysts for the ethanol oxidation reaction, RSC Advances 11 (2021) 16768-16804. https://doi.org/10.1039/d1ra01841h

M. Roschger, S. Wolf, K. Mayer, A. Billiani. Influence of the electrocatalyst layer thickness on alkaline DEFC performance, Sustainable Energy and Fuels 7 (2023) 1093-1106. https://doi.org/10.1039/d2se01729f

B. Cermenek, B. Genorio, T. Winter, S. Wolf, J.G. Connell, M. Roschger, I. Letofsky-Papst, N. Kienzl, B. Bitschnau, V. Hacker. Alkaline Ethanol Oxidation Reaction on Carbon Supported Ternary PdNiBi Nanocatalyst using Modified Instant Reduction Synthesis Method, Electrocatalysis 11 (2020) 203-214. https://doi.org/10.1007/s12678-019-00577-8

E. Antolini. Catalysts for direct ethanol fuel cells, Journal of Power Sources 170 (2007) 1-12. https://doi.org/10.1016/j.jpowsour.2007.04.009

M. Roschger, S. Wolf, B. Genorio, V. Hacker. Effect of PdNiBi Metal Content : Cost Reduction in Alkaline Direct Ethanol Fuel Cells, Sustainability 14 (2022) 15485. https://doi.org/https://doi.org/10.3390/su142215485

Z. Zakaria, S.K. Kamarudin, S.N. Timmiati. Membranes for direct ethanol fuel cells: An overview, Applied Energy. 163 (2016) 334-342. https://doi.org/10.1016/j.apenergy.2015.10.124

M. Roschger, S. Wolf, K. Mayer, M. Singer, V. Hacker. Alkaline Direct Ethanol Fuel Cell : Effect of the Anode Flow Field Design and the Setup Parameters on Performance, Energies 15 (2022) 7234. https://doi.org/https://doi.org/10.3390/en15197234

V. Alzate, K. Fatih, H. Wang. Effect of operating parameters and anode diffusion layer on the direct ethanol fuel cell performance, Journal of Power Sources 196 (2011) 10625-10631. https://doi.org/10.1016/j.jpowsour.2011.08.080

P. Ekdharmasuit, A. Therdthianwong, S. Therdthianwong. Anode structure design for generating high stable power output for direct ethanol fuel cells, Fuel 113 (2013) 69-76. https://doi.org/10.1016/j.fuel.2013.05.046

B. H. Lim, E. H. Majlan, A. Tajuddin, T. Husaini, W. R. Wan Daud, N. A. Mohd Radzuan, M. A. Haque. Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly, Chinese Journal of Chemical Engineering 33 (2021) 1-16. https://doi.org/10.1016/j.cjche.2020.07.044

D. A. Moreno-Jiménez, D. E. Pacheco-Catalán, L. C. Ordóñez. Influence of MEA catalytic layer location and air supply on open-cathode direct ethanol fuel cell performance, International Journal of Electrochemical Science 10 (2015) 8808-8822. http://www.electrochemsci.org/papers/vol10/101108808.pdf

S. Song, G. Wang, W. Zhou, X. Zhao, G. Sun, Q. Xin, S. Kontou, P. Tsiakaras. The effect of the MEA preparation procedure on both ethanol crossover and DEFC performance, Journal of Power Sources 140 (2005) 103-110. https://doi.org/10.1016/j.jpowsour.2004.08.011

Z. Turtayeva, F. Xu, J. Dillet, K. Mozet, R. Peignier, A. Celzard, G. Maranzana. Manufacturing catalyst-coated membranes by ultrasonic spray deposition for PEMFC: Identification of key parameters and their impact on PEMFC performance, International Journal of Hydrogen Energy 47 (2022) 16165-16178. https://doi.org/10.1016/j.ijhydene.2022.03.043

H. Ito, N. Miyazaki, S. Sugiyama, M. Ishida, Y. Nakamura, S. Iwasaki, Y. Hasegawa, A. Nakano. Investigations on electrode configurations for anion exchange membrane electrolysis, Journal of Applied Electrochemistry 48 (2018) 305-316. https://doi.org/10.1007/s10800-018-1159-5

M. Plevová, J. Hnát, J. Žitka, L. Pavlovec, M. Otmar, K. Bouzek. Optimization of the membrane electrode assembly for an alkaline water electrolyser based on the catalyst-coated membrane, Journal of Power Sources 539 (2022) 231476. https://doi.org/10.1016/j.jpowsour.2022.231476

Y. Liu, Z. Pan, O.C. Esan, X. Xu, L. An. Performance Characteristics of a Direct Ammonia Fuel Cell with an Anion Exchange Membrane, Energy and Fuels 36 (2022) 13203-13211. https://doi.org/10.1021/acs.energyfuels.2c02951

P. Piela, P.K. Wrona. Some anion-transport properties of NafionTM 117 from fuel cell hydrogen peroxide generation data, Journal of Power Sources 158 (2006) 1262-1269. https://doi.org/10.1016/j.jpowsour.2005.10.019



28-03-2023 — Updated on 28-03-2023

How to Cite

Roschger, M., Wolf, S., Billiani, A., Gorgieva, S., Genorio, B., & Hacker, V. (2023). Electrode configurations study for alkaline direct ethanol fuel cells: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(5), 783–793. https://doi.org/10.5599/jese.1623



8th RSE SEE & 9th Kurt Schwabe symposium Special Issue

Funding data