Consequences of hydroxyapatite doping using plasma spray to implant biomaterials

Review paper

Authors

DOI:

https://doi.org/10.5599/jese.1614

Keywords:

Natural bone, strong bonding, orthopaedic fields, bioactive coating
Graphical Abstract

Abstract

Hydroxyapatite (HAp) is still one of the most common bioactive coatings used on metal implants in orthopaedics due to its biocompatibility. The application of HAp to metallic implants can be accomplished using a variety of processes. Plasma spray (PS) coating stands out as the method of choice due to its dependability, affordability, and ability to protect metal surfaces against rust and wear. The use of HAp in medicine has been limited due to the material's unfavorable mechanical characteristics, such as brittleness, a lack of fracture toughness, and inadequate tensile strength. In addition, the remodeling durations of HAp-covered implants are significantly longer, the rate of osseointegration is significantly lower, and no antimicrobial actions or features are present in these implants. The mechanical and biological properties of HAp have been improved by applying various approaches, all of which fall under the category of surface modification tactics. Dopants are one of those strategies that are extremely successful at changing the characteristics and using them in HAp is one of those methods. As a result, this review study aims to consolidate data on implant Hap coating using the plasma spray approach and assess the benefits and problems associated with employing this method. In addition, the paper addresses how altering the structural, chemical, and mechanical features of HAp can assist in overcoming these limitations. In conclusion, it explains how the incorporation of entering the HAp structure can change the features that, when coated using the plasma spraying approach, alter the functionality of the implant.

Downloads

Download data is not yet available.

References

D. Arcos, M. Vallet-Regí, Substituted hydroxyapatite coatings of bone implants, Journal of Materials Chemistry B 8 (2020) 1781-1800. https://doi.org/10.1039/C9TB02710F

S. Awasthi, S. K. Pandey, E. Arunan, C. Srivastava, A review on hydroxyapatite coatings for the biomedical applications: Experimental and theoretical perspectives Journal of Materials Chemistry B 9 (2021) 228-249. https://doi.org/10.1039/D0TB02407D

K. Balani, Y. Chen, S. P. Harimkar, N. B. Dahotre, A. Agarwal, Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution, Acta Biomaterialia 3 (2007) 944-951. https://doi.org/10.1016/j.actbio.2007.06.001

F. E. Baştan, M. A. U. Rehman, Y. Y. Avcu, E. Avcu, F. Üstel, A. R. Boccaccini, Electrophoretic co-deposition of PEEK-hydroxyapatite composite coatings for biomedical applications, Colloids Surfaces B 169 (2018) 176-182. https://doi.org/10.1016/j.colsurfb.2018.05.005

W. J. Basirun, B. Nasiri-Tabrizi, S. Baradaran, Overview of hydroxyapatite-graphene nanoplatelets composite as bone graft substitute: mechanical behavior and in-vitro biofunctionality, Critical Review and Solid State Material Science 43 (2018) 177-212. https://doi.org/10.1080/10408436.2017.1333951

A. Bartkowiak, A. Zarzycki, S. Kac, M. Perzanowski, M. Marszalek, Mechanical properties of different nanopatterned TiO2 substrates and their effect on hydrothermally synthesized bioactive hydroxyapatite coatings, Materials 13 (2020) 5290. https://doi.org/10.3390/ma13225290

B. Beig, U. Liaqat, M.F.K. Niazi, I. Douna, M. Zahoor, M.B.K. Niazi, Current challenges and innovative developments in hydroxyapatite-based coatings on metallic materials for bone implantation, Coatings 10 (2020) 1249. https://doi.org/10.3390/coatings10121249

G.J. Cheng, D. Pirzada, M. Cai, P. Mohanty, A. Bandyopadhyay, Bioceramic coating of hydroxyapatite on titanium substrate with Nd-YAG laser, Material Scence and Engineering C 25 (2005) 541-547. https://doi.org/10.1016/j.msec.2005.05.002

M. M. Codescu, A. Vladescu, V. Geanta, I. Voiculescu, I. Pana, M. Dinu, A. E. Kiss, V. Braic, D. Patroi, V. E. Marinescu, Zn based hydroxyapatite based coatings deposited on a novel FeMoTaTiZr high entropy alloy used for bone implants, Surfaces and Interfaces 28 (2022) 101591. https://doi.org/10.1016/j.surfin.2021.101591

I. B. Grafts, B. Substitutes, Three-dimensionally engineered hydroxyapatite ceramics with interconnected pores as a bone substitute and tissue engineering scaffold, Biomaterials in Orthopedics, Marcel Dekker, Inc. New York, NY, USA. 2004. http://dx.doi.org/10.1201/b14227-14

H. Vasudev, P. Singh, L. Thakur, A. Bansal, Mechanical and microstructural characterization of microwave post processed Alloy-718 coating, Material Research Express 6 (2020) 1265f5. https://doi.org/10.1088/2053-1591/ab66fb

H. Vasudev, G. Prashar, L. Thakur, A. Bansal, Microstructural characterization and electrochemical corrosion behaviour of HVOF sprayed Alloy718-nanoAl2O3 composite coatings, Surface Topography: Metrology and Properties 9 (2021) 035003. https://doi.org/10.1088/2051-672X/ac1044

H. Vasudev, Wear Characteristics of Ni-WC Powder Deposited by Using a Microwave Route on Mild Steel, International Journal of Surface Engineering Interdisciplinary Material Science 8 (2020) 44-54. https://doi.org/10.4018/IJSEIMS.2020010104

H. Vasudev, G. Singh, A. Bansal, S. Vardhan, L. Thakur, Microwave heating and its applications in surface engineering: a review, Material Research Express 6 (2019) 102001. https://doi.org/10.1088/2053-1591/ab3674

J. Singh, S. Kumar, S.K. Mohapatra, Optimization of Erosion Wear Influencing Parameters of HVOF Sprayed Pumping Material for Coal-Water Slurry, Material Today Proceedings 5 (2018) 23789-23795. https://doi.org/10.1016/j.matpr.2018.10.170

J. Singh, S. Kumar, G. Singh, Taguchi’s Approach For Optimization Of Tribo-Resistance Parameters Forss304, Material Today Proceedings 5 (2018) 5031-5038. https://doi.org/10.1016/j.matpr.2017.12.081

J. Singh, S. K. Mohapatra, S. Kumar, Performance analysis of pump materials employed in bottom ash slurry erosion conditions, Jurnal Tribologi 30 (2021) 73-89. https://jurnaltribologi.mytribos.org/v30/JT-30-73-89.pdf

J. Singh, S. Singh, Neural network prediction of slurry erosion of heavy-duty pump impeller/casing materials 18Cr-8Ni, 16Cr-10Ni-2Mo, super duplex 24Cr-6Ni-3Mo-N, and grey cast iron, Wear 476 (2021) 203741. https://doi.org/10.1016/j.wear.2021.203741.

J. Singh, S. Kumar, S.K. Mohapatra, Study on Solid Particle Erosion of Pump Materials by Fly Ash Slurry using Taguchi’s Orthogonal Array, Tribologia - Finnish Journal of Tribology 38 (2021) 31-38. https://doi.org/10.30678/fjt.97530

J. Singh, H.S. Gill, H. Vasudev, Computational fluid dynamics analysis on effect of particulate properties on erosive degradation of pipe bends, International Journal of Interactive Design and Manufacturing (2022). https://doi.org/10.1007/s12008-022-01094-7

J. Singh, S. Singh, J. Pal Singh, Investigation on wall thickness reduction of hydropower pipeline underwent to erosion-corrosion process, Engineering Failure Analysis 127 (2021) 105504. https://doi.org/10.1016/j.engfailanal.2021.105504

J. Singh, Application of Thermal Spray Coatings for Protection against Erosion, Abrasion, and Corrosion in Hydropower Plants and Offshore Industry, in Thermal Spray Coatings, L. Thakur, H. Vasudev (Eds.), CRC Press, Boca Raton, 2021, pp. 243-283. https://doi.org/10.1201/9781003213185-10

J. Singh, S. Kumar, S.K. Mohapatra, S. Kumar, Shape simulation of solid particles by digital interpretations of scanning electron micrographs using IPA technique, Material Today Proceedings 5 (2018) 17786-17791. https://doi.org/10.1016/j.matpr.2018.06.103

J. Singh, S. Kumar, S. Mohapatra, Study on role of particle shape in erosion wear of austenitic steel using image processing analysis technique, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Process Mechanical Engineering 233 (2019) 712-725. https://doi.org/10.1177/1350650118794698

J. Singh, S. Kumar, J. P. Singh, P. Kumar, S. K. Mohapatra, CFD modeling of erosion wear in pipe bend for the flow of bottom ash suspension, Particulate Science and Technology 37 (2019) 275-285. https://doi.org/10.1080/02726351.2017.1364816

J. Singh, J. P. Singh, M. Singh, M. Szala, Computational analysis of solid particle-erosion produced by bottom ash slurry in 90° elbow, MATEC Web Conference 252 (2019) 04008. https://doi.org/0.1051/matecconf/201925204008

G. Prashar, H. Vasudev, Erosion Behaviour of Al2O3 Coatings Deposited by Plasma Spray on AISI-316 Substrate in Advances in Functional and Smart Materials, C. Prakash, S. Singh, G. Krolczyk, Eds., Lecture Notes in Mechanical Engineering. Springer, Singapore.2023, pp. 273-280 https://doi.org/10.1007/978-981-19-4147-4_29

S. Kumar, M. Singh, J. Singh, J.P. Singh, S. Kumar, Rheological Characteristics of Uni/Bi-Variant Particulate Iron Ore Slurry: Artificial Neural Network Approach, Journal of Mining Science 55 (2019) 201-212. https://doi.org/10.1134/S1062739119025468

J. Singh, J. P. Singh, Numerical Analysis on Solid Particle Erosion in Elbow of a Slurry Conveying Circuit, Journal of Pipeline System in Engineering Practice 12 (2021) 04020070. https://doi.org/10.1061/(asce)ps.1949-1204.0000518

J. Singh, A review on mechanisms and testing of wear in slurry pumps, pipeline circuits and hydraulic turbines, Journal of Tribology 143 (2021) 090801. https://doi.org/10.1115/1.4050977

H. Vasudev, L. Thakur, H. Singh, A. Bansal, Erosion behaviour of HVOF sprayed Alloy718-nano Al2O3 composite coatings on grey cast iron at elevated temperature conditions, Surface Topography: Meterial Properties 9 (2021) 035022. https://doi.org/10.1088/2051-672X/ac1c80

H. Vasudev, G. Prashar, L. Thakur, A. Bansal, Electrochemical Corrosion Behavior and Microstructural Characterization of HVOF Sprayed Inconel-718 Coating on Gray Cast Iron, Journal of Failure Analysis and Prevention 21 (2021) 250-260. https://doi.org/10.1007/s11668-020-01057-8

P. Singh, H. Vasudev, A. Bansal, Effect of post-heat treatment on the microstructural, mechanical, and bioactivity behavior of the microwave-assisted alumina-reinforced hydroxyapatite cladding, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Engineering Tribology (2022) 095440892211161. https://doi.org/10.1177/09544089221116168

R. Singh, M. Toseef, J. Kumar, J. Singh, Benefits and Challenges in Additive Manufacturing and Its Applications, in Sustainable Advanced Manufacturing and Materials Processing, S. Kaushal, I. Singh, S. Singh, A. Gupta (Eds.), CRC Press, Boca Raton, 2022, pp. 137-157. https://doi.org/10.1201/9781003269298-8

D. Kumar, R. Yadav, J. Singh, Evolution and Adoption of Microwave Claddings in Modern Engineering Applications, in: Advances in Microwave Processing for Engineering Materials, CRC Press, Boca Raton, 2022, pp. 134-153 .https://doi.org/10.1201/9781003248743-8

H. Vasudev, L. Thakur, H. Singh, A. Bansal, A study on processing and hot corrosion behaviour of HVOF sprayed Inconel718-nano Al2O3 coatings, Material Today Communications 25 (2020) 101626. https://doi.org/10.1016/j.mtcomm.2020.101626

H. Vasudev, L. Thakur, H. Singh, A. Bansal, A study on processing and hot corrosion behaviour of HVOF sprayed Inconel718-nano Al2O3 coatings, MaterialsToday Communications 25 (2020) 101626. https://doi.org/10.1016/j.mtcomm.2020.101626

P. Singh, A. Bansal, H. Vasudev, P. Singh, In situ surface modification of stainless steel with hydroxyapatite using microwave heating, Surface Topography Meterial Properties 9 (2021) 035053. https://doi.org/10.1088/2051-672X/ac28a9

G. Prashar, H. Vasudev, L. Thakur, Influence of heat treatment on surface properties of HVOF deposited WC and Ni-based powder coatings: a review, Surface Topography Metrerials Properties 9 (2021) 043002. https://doi.org/10.1088/2051-672X/ac3a52

G. Prashar, H. Vasudev, Structure-property correlation and high-temperature erosion performance of Inconel625-Al2O3 plasma-sprayed bimodal composite coatings, Surface Coatings Technology 439 (2022) 128450.https://doi.org/10.1016/j.surfcoat.2022.128450

G. Prashar, H. Vasudev, L. Thakur, Performance of different coating materials against slurry erosion failure in hydrodynamic turbines, Engineering Failure and Analysis 115 (2020) 104622. https://doi.org/10.1016/j.engfailanal.2020.104622

G. Singh, H. Vasudev, A. Bansal, S. Vardhan, S. Sharma, Microwave cladding of Inconel-625 on mild steel substrate for corrosion protection, Materials ResearchExpress 7 (2020) 026512. https://doi.org/10.1088/2053-1591/ab6fa3

G. Singh, H. Vasudev, A. Bansal, S. Vardhan, Influence of heat treatment on the microstructure and corrosion properties of the Inconel-625 clad deposited by microwave heating, Surface Topography Meterials Properties 9 (2021) 025019 .https://doi.org/10.1088/2051-672X/abfc61

U. B. Pal, S. C. Singhal, Electrochemical Vapor Deposition of Yttria‐Stabilized Zirconia Films, Journal of The Electrochemical Society 137 (1990) 2937-2941. https://doi.org/10.1149/1.2087102

J. Singh, S. Singh, A. Verma, Artificial intelligence in use of ZrO2 material in biomedical science, Journal of Electrochemicalnd Science and Engineering (2022) https://doi.org/10.5599/jese.1498

J. Singh, S. Singh, R. Gill, Applications of biopolymer coatings in biomedical engineering, Journal of Electrochemical Science and Engineering (2022). https://doi.org/10.5599/jese.1460

Y. Iwai, T. Miyajima, A. Mizuno, T. Honda, T. Itou, S. Hogmark, Micro-Slurry-jet Erosion (MSE) testing of CVD TiC/TiN and TiC coatings, Wear 267 (2009) 264-269. https://doi.org/10.1016/j.wear.2009.02.014

Z. Feng, Y. Tzeng, J.E. Field, Solid particle impact of CVD diamond films, Thin Solid Films 212 (1992) 35-42. https://doi.org/10.1016/0040-6090(92)90497-Y

Y. Wang, J. Stella, G. Darut, T. Poirier, H. Liao, APS prepared NiCrBSi-YSZ composite coatings for protection against cavitation erosion, Journal of Alloys and Compound 699 (2017) 1095-1103. https://doi.org/10.1016/j.jallcom.2017.01.034

F. Zhang, Y. Liu, Q. Wang, Y. Han, Z. Yan, H. Chen, Y. Tan, Fabricating a heavy oil viscosity reducer with weak interaction effect: Synthesis and viscosity reduction mechanism, Colloids Interface Science and Communications 42 (2021) 100426. https://doi.org/10.1016/j.colcom.2021.100426

S. S. Rajahram, T. J. Harvey, R. J. K. Wood, Erosion-corrosion resistance of engineering materials in various test conditions, Wear 267 (2009) 244-254. https://doi.org/10.1016/j.wear.2009.01.052

K.R.R.M. Reddy, N. Ramanaiah, M.M.M. Sarcar, Effect of heat treatment on corrosion behavior of duplex coatings, Journal of King Saud University - Engineering Sciences 29 (2017) 84-90. https://doi.org/10.1016/j.jksues.2014.08.002

A.F. Yetim, M.Y. Codur, M. Yazici, Using of artificial neural network for the prediction of tribological properties of plasma nitrided 316L stainless steel, Materials Letters 158 (2015) 170-173. https://doi.org/10.1016/j.matlet.2015.06.015

S. Buytoz, M. Ulutan, S. Islak, B. Kurt, O. Nuri Çelik, Microstructural and Wear Characteristics of High Velocity Oxygen Fuel (HVOF) Sprayed NiCrBSi-SiC Composite Coating on SAE 1030 Steel, Arabic Journal of Science and Engineering 38 (2013) 1481-1491. https://doi.org/10.1007/s13369-013-0536-y

J. Singh, Wear performance analysis and characterization of HVOF deposited Ni-20Cr2O3, Ni-30Al2O3, and Al2O3-13TiO2 coatings, Applied Surface Science Advances 6 (2021) 100161. https://doi.org/10.1016/j.apsadv.2021.100161

J. Singh, Tribo-performance analysis of HVOF sprayed 86WC-10Co4Cr & Ni-Cr2O3 on AISI 316L steel using DOE-ANN methodology, Industrial Lubrication Tribology 73 (2021) 727-735. https://doi.org/10.1108/ILT-04-2020-0147

J. Singh, J.P. Singh, Performance analysis of erosion resistant Mo2C reinforced WC-CoCr coating for pump impeller with Taguchi’s method, Industrial Lubrication Tribology 74 (2022) 431-441. https://doi.org/10.1108/ILT-05-2020-0155

J. Singh, S. Singh, Neural network supported study on erosive wear performance analysis of Y2O3/WC-10Co4Cr HVOF coating, Journal of King Saud University - Engineering Sciences (2022). https://doi.org/10.1016/j.jksues.2021.12.005

S. K. H. Vasudev, Microsrtructural and Mechanical Characterization of HVOF-Sprayed Ni-Based Alloy Coating, International Journal of Surface Engineering and Interdisciplinary Materials Science 10(1) (2022) 1-9. https://doi.org/10.4018/IJSEIMS.298705

J. Singh, S. Kumar, S.K. Mohapatra, An erosion and corrosion study on thermally sprayed WC-Co-Cr powder synergized with Mo2C/Y2O3/ZrO2 feedstock powders, Wear 438-439 (2019) 102751. https://doi.org/10.1016/j.wear.2019.01.082

J. Singh, S. Kumar, S. K. Mohapatra, Erosion wear performance of Ni-Cr-O and NiCrBSiFe-WC(Co) composite coatings deposited by HVOF technique, Industrial Lubrication Tribology 71 (2019) 610-619. https://doi.org/10.1108/ILT-04-2018-0149

J. Singh, S. Kumar, S. K. Mohapatra, Tribological performance of Yttrium (III) and Zirconium (IV) ceramics reinforced WC-10Co4Cr cermet powder HVOF thermally sprayed on X2CrNiMo-17-12-2 steel, Ceramics International 45 (2019) 23126-23142. https://doi.org/10.1016/j.ceramint.2019.08.007

J. Singh, Analysis on suitability of HVOF sprayed Ni-20Al, Ni-20Cr and Al-20Ti coatings in coal-ash slurry conditions using artificial neural network model, Industrial Lubrication Tribology 71 (2019) 972-982. https://doi.org/10.1108/ILT-12-2018-0460

G. Prashar, H. Vasudev, Surface topology analysis of plasma sprayed Inconel625-Al2O3 composite coating, Materials Today Proceedings 50 (2022) 607-611. https://doi.org/10.1016/j.matpr.2021.03.090

G. Prashar, H. Vasudev, High temperature erosion behavior of plasma sprayed Al2O3 coating on AISI-304 stainless steel, World Journal of Engineering 18 (2021) 760-766 https://doi.org/10.1108/WJE-10-2020-0476

G. Prashar, H. Vasudev, Structure-Property Correlation of Plasma-Sprayed Inconel625-Al2O3 Bimodal Composite Coatings for High-Temperature Oxidation Protection, Journal of Ther¬mal Spray Technology 31 (2022) 2385-2408. https://doi.org/10.1007/s11666-022-01466-1

Y. Guo, Y. Su, R. Gu, Z. Zhang, G. Li, J. Lian, L. Ren, Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating, Surface Coatings Technology 401 (2020) 126318. https://doi.org/10.1016/j.surfcoat.2020.126318

J. Bhandari, F. Khan, R. Abbassi, V. Garaniya, R. Ojeda, Modelling of pitting corrosion in marine and offshore steel structures - A technical review, Journal of Loss Prevevention Process Industries 37 (2015) 39-62. https://doi.org/10.1016/j.jlp.2015.06.008

J. Du, Challenges, Challenges in Molecular Dynamics Simulations of Multicomponent Oxide Glasses, in: Molecular Dynamics Simulations of Disordered Materials, C. Massobrio, J. Du, M. Bernasconi, P. S. Salmon (Eds.), Springer International Publishing AG Switzerland, 2015, pp. 157-180. https://doi.org/10.1007/978-3-319-15675-0_7

Y. Zykova, V. Kudryavtseva, M. Gai, A. Kozelskaya, J. Frueh, G. Sukhorukov, S. Tverdokhlebov, Free-standing microchamber arrays as a biodegradable drug depot system for implant coatings, European Polymer Journal 114 (2019) 72-80. https://doi.org/10.1016/j.eurpolymj.2019.02.029

F. Cai, X. Huang, Q. Yang, Mechanical properties, sliding wear and solid particle erosion behaviors of plasma enhanced magnetron sputtering CrSiCN coating systems, Wear 324-325 (2015) 27-35. https://doi.org/10.1016/j.wear.2014.11.008

M. Singh, H. Vasudev, M. Singh, Surface protection of SS-316L with boron nitride based thin films using radio frequency magnetron sputtering technique, Journal of Electrochemical Science and Engineering 12(5) (2022) 851-863. https://doi.org/10.5599/jese.1247

M. Singh, H. Vasudev, R. Kumar, Microstructural characterization of BN thin films using RF magnetron sputtering method, Materials Today Proceedings 26 (2020) 2277-2282. https://doi.org/10.1016/j.matpr.2020.02.493

M. Singh, H. Vasudev, R. Kumar, Corrosion and Tribological Behaviour of BN Thin Films Deposited Using Magnetron Sputtering, International Journal of Surface Engineering Interdisciplanary Material Science 9 (2021) 24-39. https://doi.org/10.4018/IJSEIMS.2021070102

Q. Wei, R. Haag, Universal polymer coatings and their representative biomedical applications, Material Horizons 2 (2015) 567577. https://doi.org/10.1039/c5mh00089k

J. Joseph, R. M. Patel, A. Wenham, J. R. Smith, Biomedical applications of polyurethane materials and coatings, The International Journal of Surface Engineering and Coatings 96 (2018) 121-129. https://doi.org/10.1080/00202967.2018.1450209

R. N. Oosterbeek, C. K. Seal, J. M. Seitz, M. M. Hyland, Polymer-bioceramic composite coatings on magnesium for biomaterial applications, Surface Coatings Technology 236 (2013) 420-428. https://doi.org/10.1016/j.surfcoat.2013.10.029

A. K. Hussain, U. M. B. Al Naib, Recent developments in graphene based metal matrix composite coatings for corrosion protection application, Journal of Metal, Materials and Minerals 29 (2019) 1-9. https://doi.org/10.14456/jmmm.2019.27

J. Song, B. Winkeljann, O. Lieleg, Biopolymer-Based Coatings: Promising Strategies to Improve the Biocompatibility and Functionality of Materials Used in Biomedical Engineering, Advance Materials Interfaces 7 (2020) 2000850. https://doi.org/10.1002/admi.202000850

N. Jagadeeshanayaka, S. Awasthi, S. C. Jambagi, C. Srivastava, Bioactive Surface Modifications through Thermally Sprayed Hydroxyapatite Composite Coatings: A Review over Selective Reinforcements, Biomaterial Science 10 (2022) 2484-2523. https://doi.org/10.1039/D2BM00039C

H. Li, K. A. Khor, R. Kumar, P. Cheang, Characterization of hydroxyapatite/nano-zirconia composite coatings deposited by high velocity oxy-fuel (HVOF) spray process, Surface Coatings Technology 182 (2004) 227-236. https://doi.org/10.1016/j.surfcoat.2003.08.081

Y.-C. Liu, G.-S. Lin, Y.-T. Lee, T.-C. Huang, T.-W. Chang, Y.-W. Chen, B.-S. Lee, K.-L. Tung, Microstructures and cell reaction of porous hydroxyapatite coatings on titanium discs using a novel vapour-induced pore-forming atmospheric plasma spraying, Surface Coatings Technology 393 (2020) 125837. https://doi.org/10.1016/j.surfcoat.2020.125837

S. A. Mali, K. C. Nune, R. D. K. Misra, Biomimetic nanostructured hydroxyapatite coatings on metallic implant materials, Materials Technology 31 (2016) 782-790. https://doi.org/10.1080/10667857.2016.1224609

G. A. C. Mejía, Développement de Revêtements Radiopaques Biohydroxyapatite / Bioglass Déposés par Projection Thermique pour des Applications Biomédicales, PhD Thesis, Trenčianska Univerzita Alexandra Dubčeka v Trenčíne, Trenčín, Slovakia, 2019. https://www.researchgate.net/publication/339295085

S. Mohandesnezhad, M. Etminanfar, S. Mahdavi, M.S. Safavi, Enhanced bioactivity of 316L stainless steel with deposition of polypyrrole/hydroxyapatite layered hybrid coating: Orthopedic applications, Surfaces and Interfaces 28 (2022) 101604. https://doi.org/10.1016/j.surfin.2021.101604

A. C. Parau, C. M. Cotrut, P. Guglielmi, A. Cusanno, G. Palumbo, M. Dinu, G. Serratore, G. Ambrogio, D. M. Vranceanu, A. Vladescu, Deposition temperature effect on sputtered hydroxyapatite coatings prepared on AZ31B alloy substrate, Ceramics International 48 (2022) 10486-10497. http://dx.doi.org/10.1016/j.ceramint.2021.12.258

G. Prashar, H. Vasudev, L. Thakur, A. Bansal, Performance of thermally sprayed Hydroxyapatite coatings for biomedical implants, Surface Review and Letters (2022) 2241001. https://doi.org/10.1142/S0218625X22410013

P.C. Rath, L. Besra, B.P. Singh, S. Bhattacharjee, Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies, Ceramics International 38 (2012) 3209-3216. https://doi.org/10.1016/j.ceramint.2011.12.026

I. Ratha, P. Datta, V. K. Balla, S. K. Nandi, B. Kundu, Effect of doping in hydroxyapatite as coating material on biomedical implants by plasma spraying method, Ceramics Internationa 47 (2021) 4426-4445. http://dx.doi.org/10.1016/j.ceramint.2020.10.112

J. V. Rau, I. Antoniac, M. Filipescu, C. Cotrut, M. Fosca, L. C. Nistor, R. Birjega, M. Dinescu, Hydroxyapatite coatings on Mg-Ca alloy prepared by pulsed laser deposition: properties and corrosion resistance in simulated body fluid, Ceramics International 44 (2018) 16678-16687. https://doi.org/10.1016/j.ceramint.2018.06.095

A. Rezaei, R. B. Golenji, F. Alipour, M. M. Hadavi, I. Mobasherpour, Hydroxyapatite/hydroxyapatite-magnesium double-layer coatings as potential candidates for surface modification of 316 LVM stainless steel implants, Ceramics International 46 (2020) 25374-25381. https://doi.org/10.1016/j.ceramint.2020.07.005

R. C. Rocha, A. G. de S. Galdino, S. N. da Silva, M. L. P. Machado, Surface, microstructural, and adhesion strength investigations of a bioactive hydroxyapatite-titanium oxide ceramic coating applied to Ti-6Al-4V alloys by plasma thermal spraying, Material Research 21(4) (2018) e20171144. http://dx.doi.org/10.1590/1980-5373-mr-2017-1144

M. S. Safavi, M. A. Surmeneva, R. A. Surmenev, J. Khalil-Allafi, RF-magnetron sputter deposited hydroxyapatite-based composite & multilayer coatings: A systematic review from mechanical, corrosion, and biological points of view, Ceramics International 47 (2021) 3031-3053. https://doi.org/10.1016/j.ceramint.2020.09.274

M. S. Safavi, F. C. Walsh, M. A. Surmeneva, R. A. Surmenev, J. Khalil-Allafi, Electrodeposited hydroxyapatite-based biocoatings: Recent progress and future challenges, Coatings 11 (2021) 110. http://dx.doi.org/10.3390/coatings11010110

F. Sharifianjazi, A. H. Pakseresht, M. S. Asl, A. Esmaeilkhanian, H. W. Jang, M. Shokou-himehr, Hydroxyapatite consolidated by zirconia: applications for dental implant, Journal of Composite and Compounds 2 (2020) 26-34. http://dx.doi.org/10.29252/jcc.2.1.4

A. Singh, G. Singh, V. Chawla, Influence of post coating heat treatment on microstructural, mechanical and electrochemical corrosion behaviour of vacuum plasma sprayed reinforced hydroxyapatite coatings, Journal of Mechanical Behaviours of Biomedical Materials 85 (2018) 20-36. https://doi.org/10.1016/j.jmbbm.2018.05.030

G. Singh, S. Singh, S. Prakash, Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy, Surface and Coatings Technology 205 (2011) 4814-4820. https://doi.org/10.1016/j.surfcoat.2011.04.064

P. Singh, A. Bansal, V. K. Verma, Hydroxyapatite reinforced surface modification of SS-316L by microwave processing, Surfaces and Interfaces 28 (2022) 101701. https://doi.org/10.1016/j.surfin.2021.101701

T. P. Singh, H. Singh, H. Singh, Characterization of thermal sprayed hydroxyapatite coatings on some biomedical implant materials, Journal of Applied Biomaterials and Functional Materials 12 (2014) 48-56. https://doi.org/10.5301/JABFM.2012.9267

S. Solanke, V. Gaval, R. Thakur, A. Pratap, Effect of varying stand-off distance on tribological and mechanical properties of plasma sprayed hydroxyapatite coated metallic substrates, Tribology in Industry 44 (2022) 97-112. http://dx.doi.org/10.24874/ti.1054.02.21.06

A. Subash, A. Basanth, B. Kandasubramanian, Biodegradable polyphosphazene-hydroxy-apatite composites for bone tissue engineering, International Journal of Polymeric Materials and Polymeric Biomaterials (2022). https://doi.org/10.1080/00914037.2022.2082426

L. Sun, C. C. Berndt, K. A. Gross, Hydroxyapatite/polymer composite flame-sprayed coatings for orthopedic applications, Journal of Biomaterials Science, Polymer Edition 13(9) (2002) 977-990. https://doi.org/10.1163/156856202760319135

R. B. Thompson, V. Reffatto, J. G. Bundy, E. Kortvely, J. M. Flinn, A. Lanzirotti, E. A. Jones, D. S. McPhail, S. Fearn, K. Boldt, M. Ueffing, S. G. Singh Ratu, L. Pauleikhoff, A. C. Bird, and I. Lengyel, Identification of hydroxyapatite spherules provides new insight into subretinal pigment epithelial deposit formation in the aging eye, Proceeding of the National Academy Science 112 (2015) 1565-1570. https://doi.org/10.1073/pnas.1413347112

Y. C. Tsui, C. Doyle, T. W. Clyne, Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels, Biomaterials 19 (1998) 2015-2029. https://doi.org/10.1016/s0142-9612(98)00103-3

A. Vladescu, C. M. Cotrut, F. A. Azem, M. Bramowicz, I. Pana, V. Braic, I. Birlik, A. Kiss, M. Braic, R. Abdulgader, Sputtered Si and Mg doped hydroxyapatite for biomedical applications, Biomedical Materials 13 (2018) 25011. https://doi.org/10.1088/1748-605X/aa9718

S. Bodhak, S. Bose, A. Bandyopadhyay, Bone cell-material interactions on metal-ion doped polarized hydroxyapatite, Materials Science and Engineering: C 31 (2011) 755-761. https://doi.org/10.1016/j.msec.2011.01.003

W. Xue, H.L. Hosick, A. Bandyopadhyay, S. Bose, C. Ding, K. D. K. Luk, K. M. C. Cheung, W. W. Lu, Preparation and cell-materials interactions of plasma sprayed strontium-containing hydroxyapatite coating, Surface and Coatings Technology 201 (2007) 4685-4693. https://doi.org/10.1016/j.surfcoat.2006.10.012

A. M. Prodan, S. L. Iconaru, M. V. Predoi, D. Predoi, M. Motelica-Heino, C. S. Turculet, M. Beuran, Silver-doped hydroxyapatite thin layers obtained by sol-gel spin coating procedure, Coatings 10 (2019) 14. https://doi.org/10.3390/coatings10010014

C. T. Wong, W. W. Lu, W. K. Chan, K. M. C. Cheung, K. D. K. Luk, D. S. Lu, A. B. M. Rabie, L. F. Deng, J. C. Y. Leong, In vivo cancellous bone remodeling on a strontium‐containing hydroxyapatite (sr‐HA) bioactive cement, Journal of Biomedical Materials Research A 68(3) (2004) 513-521. https://doi.org/10.1002/jbm.a.20089

C. M. Mardziah, I. Sopyan, S. Ramesh, Strontium-doped hydroxyapatite nanopowder via sol-gel method: effect of strontium concentration and calcination temperature on phase beha¬vior, Trends in Biomaterials and Artificial Organs 23 (2009) 105-113. https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&hitCount=5&searchType=AdvancedSearchForm&currentPosition=2&docId=GALE%7CA213025210&docType=Report&sort=Relevance&contentSegment=ZONE-Exclude-FT&prodId=AONE&pageNum=1&contentSet=GALE%7CA213025210&searchId=R2&userGroupName=anon%7Eeb04a848&inPS=true

W. Mróz, A. Bombalska, S. Burdyńska, M. Jedyński, A. Prokopiuk, B. Budner, A. Ślósarczyk, A. Zima, E. Menaszek, A. Ścisłowska-Czarnecka, Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture, Journal of Molecule Structure 977 (2010) 145-152. https://doi.org/10.1016/j.molstruc.2010.05.025

D. Predoi, S. L. Iconaru, S. C. Ciobanu, S.-A. Predoi, N. Buton, C. Megier, M. Beuran, Development of iron-doped hydroxyapatite coatings, Coatings 11(2) (2021) 186. https://doi.org/10.3390/coatings11020186

S. L. Iconaru, C. S. Ciobanu, G. Predoi, K. Rokosz, M. C. Chifiriuc, C. Bleotu, G. Stanciu, R. Hristu, S. Raaen, S. M. Raita, L. Ghegoiu, M. L. Badea, D. Predoi, Biological and Physico-Chemical Properties of Composite Layers Based on Magnesium-Doped Hydroxyapatite in Chitosan Matrix, Micromachines 13 (2022) 1574. https://doi.org/10.3390/mi13101574

S. R. Kim, J. H. Lee, Y. T. Kim, D.-H. Riu, S. J. Jung, Y. J. Lee, S. C. Chung, Y. H. Kim, Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors, Biomaterials 24(8) (2003) 1389-1398. https://doi.org/10.1016/S0142-9612(02)00523-9

S. Wu, S. Ma, C. Zhang, G. Cao, D. Wu, C. Gao, S. Lakshmanan, Cryogel biocomposite containing chitosan-gelatin/cerium-zinc doped hydroxyapatite for bone tissue engineering, Saudi Journal of Biomaterial Science 27 (2020) 2638-2644. https://doi.org/10.1016/j.sjbs.2020.05.045

L. Abeywardana, M. de Silva, C. Sandaruwan, D. Dahanayake, G. Priyadarshana, S. Chathurika, V. Karunaratne, N. Kottegoda, Zinc-doped hydroxyapatite-urea nanoseed coating as an efficient macro-micro plant nutrient delivery agent, ACS Agriculure Science and Technology 1 (2021) 230-239. https://doi.org/10.1021/acsagscitech.1c00033

A. Mariappan, P. Pandi, N. Balasubramanian, R. R. Palanichamy, K. Neyvasagam, Structural, optical and antimicrobial activity of copper and zinc doped hydroxyapatite nanopowders using sol-gel method, Mechanics, Materials Science and Engineering Journal 9(1) (2017). https://hal.archives-ouvertes.fr/hal-01497923/document

A. Groza, C. S. Ciobanu, C. L. Popa, S .L. Iconaru, P. Chapon, C. Luculescu, M. Ganciu, D. Predoi, Structural properties and antifungal activity against Candida albicans biofilm of different composite layers based on Ag/Zn doped hydroxyapatite-polydimethylsiloxanes, Polymers 8 (2016) 131. https://doi.org/10.3390/polym8040131

R. S. Kumar, S .H. S. Dananjaya, M. De Zoysa, M. Yang, Enhanced antifungal activity of Ni-doped ZnO nanostructures under dark conditions, RSC Advances 6 (2016) 108468-108476. https://doi.org/10.1039/C6RA18442A

I. Ullah, M.A. Siddiqui, S.K. Kolawole, H. Liu, J. Zhang, L. Ren, K. Yang, Synthesis, characterization and in vitro evaluation of zinc and strontium binary doped hydroxyapatite for biomedical application, Ceramics International 46(10) (2020) 14448-14459. https://doi.org/10.1016/j.ceramint.2020.02.242

M. K. Ahmed, M. Afifi, M. S. Mostafa, A. F. El-kott, H. A. Ibrahium, N. S. Awwad, Crystal structure optimization, ultrasonic properties and morphology of Mg/Se co-dopant into annealed hydroxyapatite for biomedical applications, Journal of Material Research 36 (2021) 1425-1436. http://dx.doi.org/10.1557/s43578-021-00148-y

S. Dasgupta, S. Mondal, S. Ray, Y.P. Singh, K. Maji, Hydroxyapatite-collagen nanoparticles reinforced polyanhydride based injectable paste for bone substitution: effect of dopant addition in vitro, Journal of Biomaterials Science, Polymer Edition 32 (2021) 1312-1336. https://doi.org/10.1080/09205063.2021.1916867

Z. Li, W. Cai, J. Liu, M. Zhou, L. Cheng, H. Yu, L. Song, Z. Gui, Y. Hu, One-pot exfoliation and synthesis of hydroxyapatite-functionalized graphene as multifunctional nanomaterials based on electrochemical approach, Composite A 149 (2021) 106583. https://doi.org/10.1016/j.compositesa.2021.106583

N. Vladislavić, I.Š . Rončević, M. Buzuk, M. Buljac, I. Drventić, Electrochemical/chemical synthesis of hydroxyapatite on glassy carbon electrode for electroanalytical determination of cysteine, Journal of Solid State Electrochemistry 25 (2021) 841-857. https://doi.org/10.1007/s10008-020-04856-z

H.S. AlSalem, A.A. Keshk, R.Y. Ghareeb, A.A. Ibrahim, N.R. Abdelsalam, M.M. Taher, A. Almahri, A. Abu-Rayyan, Physico-chemical and biological responses for hydroxyapatite/ZnO/graphene oxide nanocomposite for biomedical utilization, Material Chemistry and Physics 283 (2022) 125988. https://doi.org/10.1016/j.matchemphys.2022.125988

S. A. Shahamirifard, M. Ghaedi, A new electrochemical sensor for simultaneous determination of arbutin and vitamin C based on hydroxyapatite-ZnO-Pd nanoparticles modified carbon paste electrode, Biosensors and Bioelectronics 141 (2019) 111474. http://dx.doi.org/10.1016/j.bios.2019.111474

G. S. Kaliaraj, T. Siva, A. Ramadoss, Surface functionalized bioceramics coated on metallic implants for biomedical and anticorrosion performance, Journal of Mateials Chemistry B 9 (2021) 9433-9460. https://doi.org/10.1039/d1tb01301g

P. Bansal, G. Singh, H. S. Sidhu, Improvement of surface properties and corrosion resistance of Ti13Nb13Zr titanium alloy by plasma-sprayed HA/ZnO coatings for biomedical applications, Materials Chemistry and Physics 257 (2021) 123738. https://doi.org/10.1016/j.matchemphys.2020.123738

M .M. Codescu, A. Vladescu, V. Geanta, I. Voiculescu, I. Pana, M. Dinu, A. E. Kiss, V. Braic, D. Patroi, V. E. Marinescu, Bio-functionalization of a novel biocompatible high entropy alloy used for bone implants, Preprints (2021) 2021040259. https://doi.org/10.20944/preprints202104.0259.v1

F. A. Anene, C. N. Aiza Jaafar, I. Zainol, M. A. Azmah Hanim, M. T. Suraya, Biomedical materials: A review of titanium based alloys, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235 (2021) 3792-3805. https://doi.org/10.1177/0954406220967694

M. Gizer, Ö. Boyacıoğlu, P. Korkusuz, F. Korkusuz, Trace element containing Nano-HAp for preventing musculoskeletal infections, in: Health and Environmental Sciences. Nanotechnology in the Life Science,. Springer, Cham, 2021, 269-289. http://dx.doi.org/10.1007/978-3-030-64410-9_14

M. Jażdżewska, B. Majkowska-Marzec, Hydroxyapatite deposition on the laser modified Ti13Nb13Zr alloy, Advances in Materials Science 17 (2017) 5-13. https://doi.org/10.1515/adms-2017-0017

Y. H. He, Y. Q. Zhang, Y. H. Jiang, R. Zhou, Effect of HA (Hydroxyapatite) content on the microstructure, mechanical and corrosion properties of (Ti13Nb13Zr)-xHA biocomposites synthesized by sparkle plasma sintering, Vacuum 131 (2016) 176-180. https://doi.org/10.1016/j.vacuum.2016.06.015

Downloads

Published

18-01-2023 — Updated on 18-01-2023

How to Cite

Mehta, A., & Singh, G. (2023). Consequences of hydroxyapatite doping using plasma spray to implant biomaterials: Review paper. Journal of Electrochemical Science and Engineering, 13(1), 5–23. https://doi.org/10.5599/jese.1614

Issue

Section

Biomaterials